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Abstract
The label bias and selection bias are acknowledged as two reasons in data that will hinder
the fairness of machine-learning outcomes. The label bias occurs when the labeling decision
is disturbed by sensitive features, while the selection bias occurs when subjective bias exists
during the data sampling. Even worse, models trained on such data can inherit or even
intensify the discrimination. Most algorithmic fairness approaches perform an empirical
risk minimization with predefined fairness constraints, which tends to trade-o↵ accuracy
for fairness. However, such methods would achieve the desired fairness level with the
sacrifice of the benefits (receive positive outcomes) for individuals a↵ected by the bias.
Therefore, we propose a Bias-Tolerant FAir Regularized Loss (B-FARL), which tries to
regain the benefits using data a↵ected by label bias and selection bias. B-FARL takes
the biased data as input, calls a model that approximates the one trained with fair but
latent data, and thus prevents discrimination without constraints required. In addition, we
show the e↵ective components by decomposing B-FARL, and we utilize the meta-learning
framework for the B-FARL optimization. The experimental results on real-world datasets
show that our method is empirically e↵ective in improving fairness towards the direction
of true but latent labels.
Keywords: Fairness, Loss, Label Bias, Selection Bias

1. Introduction

With the increasing adoption of autonomous decision-making systems in practice, the fair-
ness of the outcome obtained from such systems has raised widespread concerns (Coston
et al., 2019; Zafar et al., 2017a). As the decision-making systems are driven by data and
models, they are vulnerable to data bias since the model can replicate the biases contained
in the input data and output biased decisions (Bird et al., 2016). To address the issues,
researchers proposed fairness-aware learning methods and demonstrated the potential in
dealing with discrimination problems in job applicants selection (Faliagka et al., 2012),
credit card approval (Khandani et al., 2010) and recidivism prediction (Brennan et al.,
2009). The fairness-aware learning methods in the previous work can be categorized into
(1) pre-processing methods: learn fair representations of the input data (Louizos et al.,
2016; Zemel et al., 2013; Calmon et al., 2017; Lum and Johndrow, 2016); (2) in-processing
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methods: incorporate fairness constraints into the objective function to achieve certain level
of fairness (Zafar et al., 2017a,b; Calders et al., 2009; Agarwal et al., 2018; Kamishima et al.,
2012) and (3) post-processing methods (Hardt et al., 2016): modify the learned posterior
distribution of the prediction to achieve fairness. In this paper, we mainly focus on the
second category, where the approaches perform an empirical risk minimization with pre-
defined fairness constraints. These constraints, heavily dependent on predefined fairness
definitions, are combined with the loss to be a fairness-aware objective function.

Model optimization based on the fairness-aware objective function creates the contro-
versy of the trade-o↵ between accuracy and fairness (Berk et al., 2017). The recent work
of Wick et al. (2019) presented the paradox that accuracy drops due to the ignorance of label
bias and selection bias when imposing fairness constraints to the model. By definition, the
label bias will flip the label, e.g., from ‘qualified’ to ‘unqualified’ in recruitment data; and
the selection bias will distort the ratios between the protected and unprotected group, e.g.,
select less positive labeled instances from the protected group. The reason that trade-o↵
occurs is that the accuracy is still evaluated on the biased data. However, when evaluated
on the bias-free data, fairness and accuracy should improve simultaneously.

In this work, inspired by the peer loss (Liu and Guo, 2020), we propose the loss function,
B-FARL, that can automatically compensate both selection bias and label bias existing in
input data with implicit regularizers. By minimizing the loss, the learned classifier using
biased data is equivalent to the learned one using unbiased data. The peer loss is designed
to handle binary label noise problems where labels are flipped randomly conditioning on
the true class. It is similar to the label bias setting in our problem but has no dependence
between the flip rate and sensitive features. In the design of our B-FARL, the flip rate
is separately considered for distinct demographic groups (samples with di↵erent values of
sensitive feature). B-FARL inherits the strength of peer loss which does not require flip
rate estimation; in addition, B-FARL also does not require explicit fairness constraints or
the level of fairness violation. We will show and prove that B-FARL is an appropriate loss
function that guides the model to learn towards fair prediction from the biased data.

Furthermore, though peer loss does not require noise rate estimation, it requires tuning a
noise rate related hyperparameter via cross validation, which is time consuming. To address
this issue, we utilize the meta-learning framework. Meta-learning can learn meta-parameters
(parameters to be optimized) from data directly, which is a data-driven optimization frame-
work. Motivated by the success of hyperparameter optimization using meta-learning (Jones,
2001), we incorporate our B-FARL into the model-agnostic meta-learning (MAML) opti-
mization framework to dynamically update the hyperparameters, which is more e�cient
than cross validation.

Specifically, our work makes three main contributions: (1) We propose the B-FARL,
which enables the learning of a fair model using data containing label bias and selection
bias. It is worth nothing that B-FARL does not require predefined fairness constratins but
learns fairness directly from data. (2) We provide a theoretical analysis of the e↵ectiveness
of B-FARL by decomposing it into three indicative terms, i.e., the expected loss on the
distribution of clean data, a fairness regularizer w.r.t. subgroups risk deviation, and the
regularizer on the disagreement between biased and unbiased observations. (3) We uti-
lize MAML framework to optimize the noise rate related hyperparameters, which is more
e�cient than the traditional cross validation.
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2. Related Work

Fairness in machine learning Most algorithmic fairness approaches in the literature
incorporate fairness constraints into the objective function (Zafar et al., 2017a,b; Calders
et al., 2009; Agarwal et al., 2018; Kamishima et al., 2012) for optimization. The fairness
constraints need to be predefined according to various statistical fairness criteria, such as
equality opportunity (Hardt et al., 2016), equalized odds (Hardt et al., 2016) and demo-
graphic parity notion like p%-rule (Biddle, 2005). In the work of Donini et al. (2018) and
Rezaei et al. (2020), they proposed to use the nonlinear measure of dependence as regulariz-
ers to approximate p%-rule or equality opportunity violations. However, the approximation
could potentially hurt the performance. Besides, there are two main general drawbacks to
these methods. First, the fairness criteria must be carefully chosen. Second, if the con-
straints can grant a fair model, testing it on the biased data will hurt the accuracy. This
creates the controversy of the trade-o↵ between accuracy and fairness. The recent work
of Wick et al. (2019) analyzed the second drawback by a framework that considered label
bias and selection bias. Under the bias setting, deploying fairness constraints directly to the
biased data can both hurt the accuracy and fairness. To address the issue, we propose to
incorporate algorithmic fairness by the label noise framework that can handle biased data
learning. The most similar work is Wang et al. (2021). However, this work is fundamentally
di↵erent from ours w.r.t. the problem to be solved. Their problem is how to derive fairness
constraints on corrupted data in the label noise problem, while we solve the fairness problem
by considering the label bias and selection bias as a special type of label noise.

Noisy label learning Most recent works of learning from noisy labels focus on modifying
the loss function, which include loss correction and reweighting methods (Scott et al., 2013;
Natarajan et al., 2013; Liu and Tao, 2016; Patrini et al., 2017). However, these methods
require estimating the noise rate or cannot handle asymmetric noise rates. The recent work
of Liu and Guo (2020) proposed a peer loss function based on the idea of peer prediction
to solve label noise problems under the asymmetric noise setting. The peer loss function is
defined as subtracting the loss of random sampled feature-label pair from the loss of each
sample. This method does not require noise rate estimation and enables us to perform
empirical risk minimization on corrupted data. The loss proposed in our work is related to
the CORES2 (COnfidence REgularized Sample Sieve) (Cheng et al., 2021) that improves
the performance of peer loss by taking the expectation of the robust cross-entropy loss over
the random sample pairs, encouraging a more confident prediction. This work inspires us
to propose the B-FARL to solve the discrimination problem from a label bias perspective.
However, this work does not in an end-to-end manner, it separates the learning process
into two phases: select most clean samples in the first phase and treats the rest samples as
unlabeled and retrain the model in the second phase.

3. Proposed Method

In this section, we will present our design for B-FARL. We begin with a detailed problem
formulation. Next, we introduce the methodology of B-FARL followed by the analysis of
B-FARL. At last, we provide the algorithm for optimizing B-FARL.
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3.1. Problem Formulation
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N

Figure 1: Generative pro-
cess of bias in N obser-
vations, shaded nodes are
observations, adapted from
Wick et al. (2019)

Given the triplet of random variables (X, Z, A) with sample
space ⌦ = X ⇥ {�1, 1} ⇥ {0, 1}, X denotes the non-sensitive
feature, Z denotes the clean and fair label and A is the binary
sensitive feature. Let f : X ! Z be a fair labeling function,
which maps X to a fair and clean outcome Z. To obtain obser-
vations, we can use an observation distribution D to generate
samples for the triplet. When the generative process is inde-
pendent of A, we name D clean and fair distribution since the
data will be fair. However, in our problem, we assume D and
the generated data are latent because of discrimination. In the
framework proposed by Wick et al. (2019), we can decompose
the discrimination as label bias and selection bias. So, instead
of observing samples from the true distribution D, we assume
one can only observe samples from a corrupted distribution eD,
where the labels from eD are discriminated by sensitive feature
A. We denote the discriminated label as Y and we assume Z is
flipped to Y with the probability conditioning on A, i.e., ✓sgn(y)a = P (Y = y | Z = �y, A = a)
in the binary classification setting. We summarize the process of labels being discriminated
in Fig. 1. We also assume A is independent of X. Such a setting separates the discrimination
from features and lets all the sources of discrimination be in A.

The label bias is from biased decisions on the sensitive feature, e.g., gender or race. Label
bias can cause the function f learned from (X, Y, A) being discriminated. On the other side,
di↵erent from label bias, selection bias will a↵ect the true ratio of two demographic groups
in favor of positive outcome (Z = 1), and a↵ect the data distribution D in further. We
assume the selection bias occurs in the process of selecting samples from positive labeled
instances among the protected group and we denote the selection bias as r

� , where r is the
original proportion of positive labeled instances among the protected group and � = 1 if
no selection bias occurs while � > 1 if selection bias occurs. The selected data is denoted
as D̂ which is a subset of D. Our aim is to learn a labeling function f̂ under the corrupted
distribution eD that can approximate the fair labeling function f and hence enable the
prediction toward fairness. We propose to use noisy label learning methods to solve this
problem. Some of these techniques, such as the re-weighting (Natarajan et al., 2013; Liu
and Tao, 2016) or loss correction (Patrini et al., 2017) methods, require ✓ to be known, or
they cannot handle asymmetric noise rates. To be more robust, we will eliminate such a
requirement by addressing it with peer loss (Liu and Guo, 2020).

A noticeable challenge of the solution is that only label bias is convertible to the label
noise, while selection bias and the combined bias cannot be directly fit into it. With
the assumption that the selection bias occurs in the process of selecting positive labeled
instances among the protected group, it will a↵ect ✓�0 . Let "�0 denote the bias rate combining
the selection bias and label bias to represent the proportion that how many data among
protected group labeled as + are finally observed as �. The relationship between "�0 and
✓�0 can be derived as ✓�0 = ��r

1�r "�0 + 1��
1�r . The full derivation can be found in the Appendix

B.
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3.2. B-FARL

In this section, we present our design for B-FARL based on peer loss. For each sample
(xi, yi), the peer loss (Liu and Guo, 2020) for i is defined as

`peer = `(f(xi, !), yi) � ↵ · `(f(xi1 , !), yi2), (1)

where ↵ is used as the parameter to make peer loss robust to unbalanced labels, and
computed as

↵ := 1 � (1 � P (Y = �1 | Z = +1) � P (Y = +1 | Z = �1))
P (Z = +1) � P (Z = �1)

P (Y = +1) � P (Y = �1)
. (2)

In other words, when P (Z = +1) = P (Z = �1) = 0.5, ↵ is 1. In practice, ↵ can be tuned as
a hyperparameter (Liu and Guo, 2020), which means we do not require to know P (Z = +1)
and P (Z = �1) for computing ↵. In Eq. (1), i1, i2 are independently sampled from S/{i}
(S = {1, 2, . . . , N}) by 1

N . The corresponding random variables with sensitive attribute
are the triplet of (Xi1 , Ai1 , Yi2). If we take demographic groups into consideration, the
original peer loss is re-weighted by a factor �a. Similar to Wang et al. (2021), it is defined
as �a = 1

1�✓+a �✓�a
and hence the group-weighted peer loss for i is

`gp = �ai · `peer. (3)

According to Liu and Guo (2020), �a used to re-scale peer loss on biased data to clean
data. Then we will show how B-FARL is designed by decomposing `gp for the protected and
unprotected groups. First, we take the expectation of `gp w.r.t. Xi1 and Yi2 over distribution
conditioning on A as Eq. (4). There are two other reasons to take the expectation form:
(1) the expectation form enables us to write the loss in terms of xi rather than the random
variable Xi1 , which provides convenience for computing. (2) instead of randomly sampled
pairs, we use the expectation to keep the loss stable.

1

N

NX

i=1

EXi1 ,Yi2 | eD
[�ai(`(f(xi, !), yi) � ↵ · `(f(Xi1 , !), Yi2))]

=
1

N

NX

i

�ai [`(f(xi, !), yi) � ↵ · P (A = 0 | eD)
X

i02S0

P (Xi1 = xi0 | A = 0, eD)EY | eD,A=0`(f(xi0 , !), Y )

� ↵ · P (A = 1 | eD)
X

i02S1

P (Xi1 = xi0 | A = 1, eD)EY | eD,A=1`(f(xi0 , !), Y )]

=
1

N

NX

i

�ai [`(f(xi, !), yi) � ↵ ·
|S0|

N

X

i02S0

1

|S0|
EY | eD,A=0`(f(xi0 , !), Y )

� ↵ ·
|S1|

N

X

i02S1

1

|S1|
EY | eD,A=1`(f(xi0 , !), Y )]

=
1

N
(
X

i2S0

�ai [`(f(xi, !), yi) � ↵ · EY | eD,A=0`(f(xi, !), Y )]

+
X

i2S1

�ai [`(f(xi, !), yi) � ↵ · EY | eD,A=1`(f(xi, !), Y )]),

(4)



Zhang Zhou Li Wang Chen

where S0 = {i|ai = 0} and S1 = {i|ai = 1}. Based on Eq. (4), we add intensity parameter
to obtain the framework of B-FARL (LF ) as

LF =
1

N

NX

i=1

(`B(!) + �`A(!)), (5)

with

`B(!) = �ai`(f(xi, !), yi), � =


��0

��1

�T
,

`A(!) =

"
EY | eD,A=0(1 � ai)`(f(xi, w), Y )

EY | eD,A=1ai`(f(xi, w), Y )

#
,

(6)

where �0, �1 are two hyperparameters that control the intensity of the regularizer terms (`A).
We let �ai and ↵ in Eq. (4) be absorbed into �0 and �1. Most widely used surrogate loss
functions can be used for `. For example, 0-1 loss can be applied with su�cient training
data (Bartlett et al., 2006) for its robustness to instance-dependent noise (Manwani and
Sastry, 2013) but alternatives also can be applied such as cross entropy, logistic loss, etc.
Compared to the peer loss, the two expectation regularization terms conditioning on the
protected and non-protected groups can further improve the prediction performance. In
section 3.3, we will show how the regularization terms help improve the performance.

3.3. Analysis of the B-FARL

In this section, we explain the e↵ectiveness of Eq. (5) by decomposing it into components
that demonstrate fairness regularization and discrimination correction. The full derivation
can be found in Appendix A. B-FARL can be decomposed into the following three terms:

E eD[`B(!) + �`A(!)]

=ED[`(f(X), Z)]| {z }
clean model

+ � · [E eD|A=0`(f(X), Y ) � E eD|A=1`(f(X), Y )]
| {z }

fairness regularization

+
X

a

P (A = a)
X

k2{+1,�1}

X

l2{+1,�1}

P (Z = l)EDx|l,a(�a✓
sgn(k)
a � �a · P (Y = k))`(f(x), k).

| {z }
bias regularization

(7)
The first term is for learning with clean data. The second term shows the fairness regular-
ization w.r.t. subgroup risks deviation which is defined in Def. 1 (Without loss of generality,
we assume E eD|A=0`(f(X), Y ) > E eD|A=1`(f(X), Y )). The last term shows the regularization

e↵ect on the biased data. Here both the regularizer e↵ects � in the second term and �a in
the last term are decomposed from �0 and �1 in Eq. (5).

Definition 1 (Perfect fairness via subgroup risks) We say that a predictor f 2 F is

perfectly fair w.r.t. a loss function ` if all subgroups attain the same average loss; i.e., in

the binary sensitive attributes case (Sec. 3.2 in Williamson and Menon (2019)),

EX,Y |A=0`(f(X), Y ) = EX,Y |A=1`(f(X), Y ). (8)
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More specifically:

• The first term is the expected loss on the distribution of clean samples.

• The second term is a fairness regularizer on the noisy distribution w.r.t. the sub-
group risk measure on the noisy distribution. As explained in Williamson and Menon
(2019), Def. 1 tells us under the perfect fairness, the prediction performance w.r.t.
the sensitive attributes should not vary. The best case for the regularizer is perfect
fairness according to Def. 1. We use the di↵erence between average subgroup risk to
measure the fairness violation and � is the regularizer e↵ect.

• The third term is a regularizer w.r.t. noisy loss. This loss is the penalty for the

disagreement between Y and Z. The ideal situation is that �a✓
sgn(k)
a � �a · P (Y = k)

should be minimized, and hence the noisy term will vanish. We should point out that
the selection bias is included in ✓�1 = ��r

1�r "�1 + 1��
1�r and if � = 1, ✓�1 = "�1 .

• For equivalence, it is noticeable when the first term is minimized, f(X) is the Bayes
optimal classifier on clean data, which means the penalties of all bias do not exist. As
a result, on the optimal point, all three terms are minimized so that the summation is
also minimized. Therefore, classifier that can minimize the B-FARL equals classifier
that can minimize the first term, which indicates the equivalence.

• The e↵ectiveness of the first and second terms are similar to traditional loss function
with fairness constraints. However, here the loss function is learned from Z while the
traditional methods still use Y . Such di↵erence endues our loss the capability to learn
the correct model.

3.4. Optimization B-FARL via Model-Agnostic Meta-Learning

Meta-learning is a general framework of data-driven optimization. Most of the meta-learning
methods can be viewed as a bi-level optimization which contains inner loop optimization
(main optimization) and outer loop optimization (optimize the meta-parameter, e.g. hyper-
parmeters of inner loop). In our work, we consider the B-FARL as the main optimization
goal and the re-weighting factor �ai and regularization parameters � as the meta-parameters.
Since �ai for individuals among the same demographic group is the same, we can also write
the first part in Eq. (5) as the following format

1

N

NX

i=1

`B(!) =
1

N
[↵0

X

i2{S0}

`(f(xi, !), yi) + ↵1

X

i2{S1}

`(f(xi, !), yi)] =
1

N
↵`Da , (9)

where ↵ =


↵0

↵1

�T
and `Ba = [

P
i2{S0} `(f(xi, !), yi),

P
i2{S1} `(f(xi, !), yi)]. Overall, the

optimization can be viewed as

min
↵,�

LF (!p), !p = arg min
!

LF (!). (10)



Zhang Zhou Li Wang Chen

We split the optimization into two stages and here we define !t, �t and ↵t as the corre-
sponding variables in step t. In the meta training stage, we first initialize � and ↵, to obtain
!1, then fix !1 to obtain �1 and ↵1. These two steps iteratively used to obtain !t+1, �t+1

and ↵t+1. In the actual training stage, we optimize B-FARL with the updated �t+1 and
↵t+1 from meta training stage. The detailed steps are summarized in Algorithm 1.

3.4.1. Meta training stage

We randomly split the training set into mini-batches with batch size n. With fixed values
of �t+1 and ↵t+1, we first perform the inner loop optimization and the one-step-forward
weights !t+1 is updated by gradient descent with learning rate ⌘

!t+1 = !t
� ⌘r!t

1

n

nX

i=1

(↵t`Ba(!
t) + �t`A(!t)) (11)

Now with updated !t+1, we then perform the outer loop optimization which updates �t+1

and ↵t+1 via gradient descent with learning rate ⌘0

�t+1 = �t
� ⌘0r�t

1

n

mX

i=1

(↵t`Ba(!
t+1) + �t`A(!t+1)),

↵t+1 = ↵t
� ⌘0r↵t

1

n

mX

i=1

(↵t`Ba(!
t+1) + �t`A(!t+1)).

(12)

3.4.2. Actual training stage

We should point out that in the meta training stage, ! is the auxiliary as the purpose of
meta training stage is to determine the optimal value for � and ↵. Once we have updated
� and ↵, we train the model (! in the actual training stage) via gradient descent with
learning rate �

!t+1 = !t
� �r!t

1

n

nX

i=1

(↵t+1`Ba(!
t) + �t+1`A(!t)). (13)

Algorithm 1 Optimization for B-FARL
Initialize the hyperparameter � and ↵ and model weights !
for t=1,· · · T do

Update the model parameter !t+1 by Eq. (11)
Update �t+1 and ↵t+1 by Eq. (12)
Train model with �t+1 and ↵t+1 by Eq. (13)

end

Obtain the prediction results

4. Experiments and Comparisons

In this section, we conduct experiments on real world data to investigate the e↵ects of label
bias and selection bias that a↵ect accuracy and fairness and show the e↵ectiveness of our
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proposed method. Since we cannot observe the latent fair labels of the real-world data, we
assume the observed data is clean and add di↵erent biases to create a biased version.

4.1. Experiment Setup

In this section, we introduce our experiment setting including the evaluation metrics and
dataset descriptions.

4.1.1. Evaluation Metrics

We use two metrics: Di↵erence of Equal Opportunity (DEO) (Hardt et al., 2016) and
p%-rule (Biddle, 2005) to measure fairness violation . They are defined as

DEO = |P (Ŷ = 1 | A = 1, Y = 1) � P (Ŷ = 1 | A = 0, Y = 1)|,

p% = min(
P (Ŷ = 1 | A = 0)

P (Ŷ = 1 | A = 1)
,
P (Ŷ = 1 | A = 1)

P (Ŷ = 1 | A = 0)
).

A higher DEO and smaller p% indicate more fairness violation. These two indicators
evaluate fairness from a di↵erent perspective. DEO considers the additional condition with
the original label is positive, and p%-rule only considers the prediction results. Their
combination can avoid the case that classifier pushes the results to demographic parity but
neglect the true labels. In our experiment, we implement a simple Multi-Layer Perceptron
(MLP) to train, and we applied binary cross-entropy loss for ` in Eq. (5). We use the
weighted macro F1 score to measure the performance, which is the macro average weighted
by the relative portion of samples within di↵erent classes. We split the data into 90% train
and 10% test, and we report the results in the form of mean ± standard deviation over ten
experiments with ten random splits.

4.1.2. Dataset Description

Adult Dataset
1
: The target value is whether an individual’s annual income is over $50k.

The original feature dimension for this dataset is 13. After feature aggregation and feature
encoding , the feature dimension is 35. The sensitive attribute is ‘Gender’, and we consider
‘Gender = Female’ as protected group.
German Credit Dataset

2
: The task of this dataset is to classify people as good or poor

credit risks. The features include economical situation of each individual as well as personal
information like age, gender, personal status, etc. The feature dimension is 13. In our ex-
periment, we set ‘Gender’ as sensitive attribute and ‘Gender = Male’ as protected group.
Compas Dataset

3
: This data is from COMPAS, which is a tool used by judges, probation

and prole o�cers to asses the risk of a criminal to re-o↵end. We focus on the predictions of
‘Risk of Recidivism’ (Arrest). The algorithm was found to be biased in favor of white de-
fendants over a two-year follow-up period. We consider ‘Race’ to be the sensitive attribute
and ‘Race=Black’ as protected group. After feature encoding and aggregation, the feature
dimension is 11.

1. http://archive.ics.uci.edu/ml/datasets/Adult
2. https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
3. www.propublica.org/article/how-we-analyzed-the-compasrecidivism-algorithm
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dataset number of instances protected/unprotected groups number of instances Source
Adult 30,717 female/male 10,067/20,650 UCI

German Credit 900 female/male 278/622 UCI
Compas 6,492 black/white 3,325/3,167 COMPAS

Table 1: Dataset description

4.1.3. Baseline Models

From the perspective of fairness constraints, we compare to two recent fairness-aware learn-
ing methods: Rezaei et al. (2020); Donini et al. (2018); From the perspective of label bias,
we compare to two related noisy label learning methods: CORES2 (Cheng et al., 2021);
Group Peer Loss (GPL) (Wang et al., 2021) as our baseline comparison. Besides, we also
compare to two baseline methods: Clean and Biased, in which we train MLP on the clean
data and biased data respectively.

Figure 2: Accuracy and fairness violation under di↵erent label bias settings. The x-axis is
the average label bias over {✓+0 , ✓�0 , ✓+1 , ✓�1 }. We use same color to denote the methods in
the same category, i.e., we use blue color to denote GPL and CORES2, which are both noisy
label learning method, and we use gray color to denote two algorithmic fairness methods.

For the e�ciency, the runtime of GPL is around 20.51 minutes. B-FARL only needs
0.83 minutes. CORES2 needs 2.32 minutes for two phases together. The incorporation of
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the meta-learning framework is much more e�cient, the time complexity for B-FARL is
O(Td2), where T is the number of iterations and d represents feature dimensions.

4.2. Comparison and Application on Real Word Data

4.2.1. Case 1: Label bias

In the first case, we test the performance of di↵erent methods under di↵erent settings of
label bias with selection bias fixed. We set average label bias amount from 0.1 to 0.5 while
fix the selection bias with � = 1.1. We add bias into the train set only while keep test set
clean. In the settings, we always require ✓+0 > ✓�0 and ✓�1 > ✓+1 .

The results are shown in Figure. 2. The prediction performance of our method generally
outperforms other methods with the increase of label bias. Overall, the two algorithmic fair-
ness methods have lower F1 scores than the two noisy label learning methods and B-FARL,
though they have lower fairness violations. This demonstrates the algorithmic fairness
methods will achieve a certain fairness level by “flipping” the labels of some individuals,
and the low F1 indicates the flipping is in the opposite direction of the true labels. This is
what we have claimed the controversy of accuracy and fairness trade-o↵. Also, we notice
that the F1 score of two algorithmic fairness methods decreases while the fairness violation
increases as the amount of label bias increases, which indicates they are not robust to the
di↵erent amount of label bais; In the meantime, two noisy label learning methods, as well
as B-FARL, have more steady F1 when we increase the amount of label bias. However,
since CORES2 does not take fairness into consideration, it has an overall higher fairness
violation compared to GPL and B-FARL. GPL deploys derived fairness constraints under
corrupted distribution, so it has overall lower fairness violation compared to CORES2, but
higher than B-FARL.

For the adult dataset, we found the results for GPL are very close to ours while GPL
has a slightly higher p% value and DEO, and ours has higher accuracy and lower DEO. For
the Compas dataset, the accuracy of our method is closest to the accuracy on the clean data
and achieves closer p% to the benchmark for clean distribution. For the German Credit
dataset, B-FARL has the highest f1, with the highest p% and lowest DEO. Overall, B-FARL
is superior to the other baseline methods for optimizing towards the latent fair labels under
di↵erent label bias amounts.

4.2.2. Case 2: Selection Bias

In this section, we conduct our experiments on how selection bias would a↵ect performance
and fairness violation. We fixed the label bias which we set as ✓+0 = 0.25, ✓�0 = 0.05,
✓+1 = 0.05 and ✓�1 = 0.25. We increase the selection bias by 2% from � = 1.01 to � = 1.1.
Similar to the setting in Sec 4.2.1, we add selection bias to train set only.

From Fig. 3 we can see B-FARL also outperforms among all the methods with the
highest F1 and low fairness violations. Unlike the experimental results of label bias, we do
not observe an apparent decreasing trend as selection bias increases. However, the di↵erence
between our method and other methods are distinct. And our performance is the closest
to the clean one. Also, we found GPL cannot handle selection bias very well compared to
its performance under label bias. For the Adult dataset, B-FARL has the highest F1 and
lowest fairness violation w.r.t. both DEO and p% measure and is close to the baseline on
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clean data. The F1 score of two algorithmic fairness methods and two noisy label learning
methods are close. For the Compas and German Credit dataset, B-FARL has the highest
F1 score. Two algorithmic fairness methods have the highest p% value. Still, the method
proposed by Donini et al. (2018) has a higher DEO violation and higher F1 than the
method proposed by Rezaei et al. (2020). In contrast, the method proposed by Rezaei
et al. (2020) has the lowest F1 and lowest DEO violation. This demonstrates the same
phenomenon we have concluded in Sec 4.2.1. Similar to the experiment of label bias, the
two noisy label learning methods have higher F1 and higher fairness violations compared
to the two algorithmic fairness methods. B-FARL has the highest F1 and lowest fairness
violation compared to all the methods. Overall, B-FARL is superior to the other baseline
methods also under di↵erent amounts of selection bias.

Figure 3: Accuracy and fairness violation under di↵erent selection bias settings. The x-axis
is the average selection bias which is related to the proportion of positive labeled instances
among the protected group. The blue color is for GPL and CORES2, which are both noisy
label learning method. The gray is for two algorithmic fairness methods.

4.3. Evaluate Our Methods on the Clean Data

We also evaluate our method on the clean data directly. We simulated ten sets of clean data
according to Fig. 1. The detailed generation steps are provided in Appendix C. We found
our method can achieve similar accuracy and fairness level to the baseline on the clean
data. Though GPL has the highest F1 score, it also has the highest fairness violations,
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this may imply GPL over-corrects the labels. In contrast, Rezaei et al. (2020) has the
smallest fairness violations but with lowest F1 score, this was aligned with the results in
Section 4.2.1. We found both CORES2 and Donini et al. (2018) have accuracy and fairness
drop, the former may due to the nonlinear measure of fairness constraints, which has the
adverse impact of both performance and fairness, the latter may caused by the second phase
of sample sieve, which introduce randomness for the semi-supervised learning.

Clean B-FARL Donini Rezaei CORES2 GPL
F1 98.52±1.28% 98.51±1.60% 98.22±0.85% 94.93±0.89% 94.86±2.23% 98.95±0.66%

DEO 0.62±0.61% 0.71±0.73% 0.79±0.34% 0.46±0.40% 0.87±0.47% 1.06±0.77%
p% 95.10±4.14% 95.39±3.80% 94.26±3.06% 95.88±4.32% 95.05±4.13% 94.41±4.47%

Table 2: Performance on the clean datasets

4.4. Impact of Regularization Intensity
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Figure 4: Regularization intensity vs.
performance on Compas dataset. The x-
axis is the norm of �, the left y-axis is the
F1 score (blue line) and the right y-axis
is fairness measure w.r.t. p% (gray line).

We also examine how the regularization inten-
sity � works by conducting the experiment on
the ‘Compas’ dataset. We record the F1 score
and p% value when increasingly update �. We
compute ||�|| to measure the intensity. We can
see from Fig. 4, when the regularization inten-
sity increases from around 0.2 to 0.95, the per-
formance and p% value also increases. This
demonstrates that when B-FARL is guided by
appropriate regularization intensity, the accu-
racy and fairness improve simultaneously. How-
ever, as the intensity gets larger, we can see the
p% value still increases, but the F1 score starts
to decrease. This indicates that the fairness reg-
ularizer term starts to dominate as the intensity
becomes larger and hence causes the results to
achieve perfect fairness while neglecting the ac-
curacy performance. However, with appropriate
regularization intensity, the accuracy performance and fairness improve together.

5. Conclusion

In this paper, we tackle the discrimination issue from the label bias and selection bias per-
spective. We propose a bias-tolerant fair classification method by designing B-FARL, which
is a loss having the regularization e↵ect that can compensate both label bias and selection
bias. To optimize B-FARL more e�ciently, we incorporate it with the model-agnostic meta-
learning framework to update the hyperparameters. Besides, We decompose the B-FARL
loss into three meaningful components, including expected loss under the distribution of
clean samples, fairness regularizer, and a regularizer on the disagreement between biased
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and unbiased observations to demonstrate the e↵ectiveness of B-FARL theoretically. We
empirically demonstrated the superiority of our proposed framework through experiments.
The possible future research directions of this work including: relax the assumption that
X is independent of A for more complex data since in practice X will always contain the
information from A. This can also be connected with instance-dependent label bias setting
since we do not only consider the flip rate related to the true label and A, but rather include
the dependency with X; combine with explainability techniques (Mary, 2019) to explore
how B-FARL influence the decisions for bias correction; extend to multi-class classification
tasks and enable the bias setting with multiple sensitive attributes.
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