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Abstract

The stationarity is assumed in the vanilla Hawkes process, which reduces the model complexity but introduces a strong
assumption. In this paper, we propose a fast multi-resolution segmentation algorithm to capture the time-varying characteristics
of the nonstationary Hawkes process. The proposed algorithm is based on the first- and second-order cumulants. Except
for the computation efficiency, the algorithm can provide a hierarchical view of the segmentation at different resolutions.
We extensively investigate the impact of hyperparameters on the performance of this algorithm. To ease the choice of
hyperparameter, we propose a refined Gaussian process-based segmentation algorithm, which is proved to be a robust method.
The proposed algorithm is applied to a real vehicle collision dataset, and the outcome shows some interesting hierarchical

dynamic time-varying characteristics.

Keywords Hawkes process - Nonstationary - Segmentation - Cumulants

1 Introduction

The point process data is a common data type in real
applications. To model this kind of point process data, var-
ious statistical models have been proposed to disclose its
underlying temporal dynamics, such as homogeneous Pois-
son process [28], inhomogeneous Poisson process [30] and
Hawkes process [11]. In this paper, we focus on the Hawkes
process.

Hawkes process is widely used to model the self-exciting
phenomenon which can be observed in many fields, like
crime [16], ecosystem [10], transportation [7] and TV pro-
grams [17]. An important way to characterize a temporal
point process is through the definition of a conditional inten-
sity. The specific Hawkes process conditional intensity is:

t
A1) = M+/0 ¢t —)dN(s) = p+ Y ¢t —1), (1)

ti <t

where © > 0 is the baseline intensity which is constant,
{t;} are the timestamps of events before time 7, N(¢) is the
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corresponding counting process and ¢ (-) > 0 is the trigger-
ing kernel. The summation of triggering kernels explains the
nature of self-excitation, which is the occurrence of events
in the past will intensify the intensity of events occurring in
the future.

It is straightforward to see that the conditional intensity
of Hawkes process is unchanged over timeshifting because
[ is a constant and ¢ (-) only depends on T = ¢t — #;, not
on t, which means the stationarity [11,25]. The assumption
of stationarity leads to reduced model complexity and easy
inference. However, the point process data generated in many
real applications has nonstationary properties, which means
its first-, second- and higher-order cumulants (moments) are
changing over time. Applying the vanilla Hawkes process
directly to the nonstationary data is apparently inappropriate.
On the other hand, the nonstationarity itself can be an impor-
tant feature in some applications. For example, the pattern of
human heart rate can change from healthy to ill conditions
and under different physiological states; in transportation, the
influence of a car accident to the road condition is changing
between day and night, busy and non-busy hours (see Fig. 1).

One of the common methods of analyzing nonstationary
time series is to use segmentation. This kind of problem is
also called a change-point problem in mathematics [6,15].
Given a nonstationary point process data, the segmentation
algorithm will divide the whole observation period into sev-
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Fig.1 In transportation, car accidents will have a triggering effect (the
arch function above) on the future and the triggering effect is varying
between day and night, busy and non-busy hours. An example of the
multi-resolution segmentation of the time axis is shown above: a low-

eral non-overlapping contiguous segments in such a way that
each segment is more approximately stationary than the orig-
inal data and can be assumed to be stationary.

To the best of our knowledge, no segmentation algorithm
has been proposed for the nonstationary Hawkes process. In
this paper, we propose the first multi-resolution segmenta-
tion (MRS) algorithm for the nonstationary Hawkes process,
which can reveal the optimal partition structure in a hierarchi-
cal manner. The multi-resolution segmentation is meaningful
in real data applications. For example, when the traffic data is
analyzed (see Fig. 1), the low-resolution partition (e.g., two
segments) corresponds to a “coarser” distinction (e.g., day
and night), while the high-resolution partition (e.g., four or
six segments) corresponds to a “finer” distinction (e.g., the
alternating busy and non-busy hours). The multi-resolution
segmentation will help us obtain a hierarchical insight into
the nonstationary structure of point process data.

As shown later, the performance of the MRS algorithm
depends on the choice of hyperparameters. To ease the
choice of one hyperparameter, we propose a revised Gaus-
sian process-based version which is more robust. Overall,
our work makes the following contributions:

— We propose the first multi-resolution segmentation algo-
rithm which provides a hierarchical analysis of the
dynamic evolution of the nonstationary Hawkes process.

— The MRS depends on the cumulants of the Hawkes pro-
cess which is fast to compute. Consequently, the MRS
(linear computation complexity) is faster than the case
of direct estimation of baseline intensity and triggering
kernel.

— A more robust revised version of MRS is also proposed
to ease the choice of one hyperparameter, which is slower
but still acceptable in real applications.

The rest of the paper is organized as follows: In Sect. 2,
we summarize some related work. In Sect. 3, we describe
the cumulants of the Hawkes process. In Sects. 4 and 5, we
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resolution (2 segments) and a high-resolution (4 segments) partitions
provide a hierarchical insight into the dynamic time-varying character-
istics of triggering effect of vehicle collision

propose our MRS algorithm and perform the synthetic data
experiment. In Sect. 6, we discuss the Gaussian process MRS
(GP-MRS) to ease the choice of one hyperparameter and per-
form the synthetic data experiment. In Sect. 7, a real vehicle
collision dataset is analyzed. Finally, we conclude our work.

2 Related works
2.1 Nonstationary Hawkes process

The generalization of vanilla Hawkes process to nonsta-
tionary Hawkes process [25] mainly consists of two cases:
the first case is the extension of baseline intensity pu to
time-changing . (¢) and the second case is the extension
of triggering kernel ¢ (7) to time-changing ¢ (t, ). Plenty
of state of the arts have performed inference for a time-
changing baseline intensity with a stationary triggering
kernel [13,14,27]. For both baseline intensity and triggering
kernel being nonstationary, the authors of [24] and [23] pro-
vided a general nonparametric estimation theory for the first-
and second-order cumulants of a locally stationary Hawkes
process. However, this method is inefficient in computa-
tion complexity because every point on the two-dimensional
covariance function Cov(t, t) has to be estimated and it is
not applicable to real applications. In this sense, our MRS
algorithm can be considered as a “coarser” version of the
work in [24]: it combines adjacent small sectors with similar
statistical properties into a larger segment and only outputs
more heterogeneous segments. Although it is “coarser,” the
computation complexity is drastically reduced to make it
practical.

2.2 Segmentation of time series

The nonstationarity is a common property in time-series data
[1,18]. Segmentation is a standard method of data analy-
sis to divide a nonstationary sequential data into a certain
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number of non-overlapping contiguous homogeneous seg-
ments. A heuristic segmentation algorithm is designed to
study the distribution of periods with constant heart rate in
[4]. The same method is also applied to analyze changes
of the climate [9]. A generalized version is proposed in [5]
to overcome the over-segmentation problem caused by het-
erogeneities induced by correlations. Similarly, the authors
of [29] generalizes this existing algorithm for segment-
ing regime switching processes. All segmentation methods
mentioned above cannot be applied directly to the Hawkes
process, because they only consider the case of (marked)
Poisson process.

3 Cumulants of Hawkes process

The cumulants of Hawkes process [3,12] are used in the MRS
algorithm because the utilization of cumulants can accelerate
the inference as shown in the experiment of Sec. 5.1. We
consider a 1-variate Hawkes process N; whose jumps are all
of size 1 and whose intensity at time ¢ is A(¢). If {;} denotes
the jump times of N;, the A(¢) can be expressed as (1). If N;
is stationary, the first-order cuamulant (mean event rate) is

Adt = EdNy) = (2)

n
—dr.
1— [¢(r)dr
The second-order cumulant is
Cov(dNy,, dN;,)) = E(dN,dN;,) — E(dN,,))E(dN,,). 3)

Because N; is stationary, Cov(dN;,, dN,) only depends on
T =t — t1 and can be expressed as:

v(t)dt = E(dNpdN;) — E(dNp)E(dNy). )
Or, it can be rewritten in terms of conditional expectations
g(t)dr = v(r)dr/A = E(dN;|dNg = 1) — Adr. @)

The g(t) will be used throughout this paper.

A stationary Hawkes process is uniquely defined by its
first- and second-order cumulants, and there is a bijection
between its second-order statistics g(t) and the triggering
kernel ¢ (7) [3].

4 Multi-resolution segmentation

We assume there is a set of observation {z;} lN: yon[0, T']from
anonstationary Hawkes process where the baseline intensity
[ is piecewise constant and the triggering kernel ¢ (7) is
changing over time ¢. The fundamental idea of MRS is to

uniformly divide the observation period [0, 7] into M sectors
(the highest resolution), i.e., s1, ..., sy, where {sj}j!"':1 are
sectors and |s ;| is the width of the sector. In each s;, the point
process is assumed to be stationary.

Intuitively, we can estimate the triggering kernel ¢ (7) in
each sector, compare them by adjacent pairs, and find out the
possible partition positions. However, the estimation of ¢ ()
is time consuming no matter in parametric way (maximum
likelihood estimation) or nonparametric way (EM algorithm
[14], Wiener—Hopf equation [3]), let alone running on all sec-
tors. In order to increase the computation efficiency, we do
not estimate ¢ (t) in each sector directly but use the second-
order statistics g;(t) instead which can be estimated faster.
The second-order statistics g () in each sector can be empir-
ically estimated using (5).

The reason we can replace ¢ (7) in each sector with g; ()
is that there is a bijection between them, so the difference
between two adjacent g; (1) stands for the nonstationarity of
¢ (7). The difference of two adjacent g;(7) is written as a
normalized mean squared error (NMSE)

(6)

NMSE — E, <( gj(0) gj+1(1) 2).

[gi(@dr  [gjs(nde

In most cases, g;(7) is an even function for 1-variate
Hawkes process when T — £o00, g;j(r) — 0.1If g;(1) is
expressed as a histogram function g;(r) = Zle (g’/‘.Skh)
where 8, (v) = 1if (k — 1)h < v < kh and 0 otherwise,
h is the bin-width and g (t) is 0 beyond the support of K4,
we can write g;(7) as a vector g; = [g]]‘.],le. Eq. (6) can be
rewritten into a discrete version

k k
ZK ( 8j _ 8j+1 )2
k= 2n P gl; 2h Y5 g1}+1
X .

NMSE =

)

Given the NMSE on all candidate cutting positions, if a
desired number of segments (the desired output resolution)
R is set, we can pick out the largest R — 1 cutting positions
which is the segmentation.

The scheme of MRS is shown in Fig. 2. By multi-
resolution, we mean by increasing (decreasing) the desired
output resolution R the segmentation algorithm will output
segments at different resolutions in a hierarchical manner.
For example, when R = M, the partitioner will output the
highest resolution (cutting at all candidate positions), as R
becomes smaller, the output resolution will be lower (fewer
segments will be given out) until there is no cutting at all.

After segmentation, we can piecewisely learn the baseline
intensity and triggering kernel on each segment. Specifically,
a nonparametric estimation method: Wiener—Hopf equation
method [3] is used. As proved in that work, ¢ () and g(t)
satisfy the Wiener—Hopf equation
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o] 1('[) : ¢ Z(T) : o] 3(7) Table 1 Multi-resolution segmentation results. “New Position” is the
i K i newly added partition position
i !
N i i R 1 2 3 4 5
o
P : . gip + uy : M N R New position 1%} 600 200 500 900
Oy t; oo 11 T Mi
i in(Threshold)
\‘\ ‘*‘:I AR \ (. . ]\ “Max(NMSE) 100%  88.45% 1141% 8.05% 7.15%
NMSE(S]'SI“_I) candidate position R 6 7 8 9 10
New position 400 300 700 800 100
Fig. 2 The scheme of multi-resolution segmentation, for simplicity u Min(Threshold)
is assumed to be constant and there are 3 different ¢ (t)’s distributed on Max(NMSE) 6.88%  5.17% 2.24% 125% 0%

[0, T]

8(t) = (1) + ¢(v) * g(1), VT > 0, ®)

where * stands for the convolution. In most cases, the Winer—
Hopf equation cannot be solved analytically, but there is a lot
of literature on how to solve it numerically [2,19]. A common
method is the Nystrom method [20]. After the solution of
¢(7), i can be estimated by the first-order cumulant (2).
The overall pseudocode of MRS and estimation of © and
¢ (7) is formally presented in Alg. 1.

Algorithm 1 Algorithm for MRS and estimation of ’s and
@ (7)’s

Input: {z; f\':l, T,R,M,K .

Qutput: partition positions, © and ¢ (7) on each segment .

1: Uniformly divide [0, T'] into sectors {s_/}j!/lz 1

2: Estimate the second-order statistics g; = [g’]f]f:1 on each s; using
5).

3: Compute the NMSE between two adjacent g; using (7).

4: Set a desired output resolution R to obtain the partition positions.

5: After segmentation, estimate the second-order statistics g () oneach
segment using (5).

6: Estimate 1 and ¢ (7) on each segment using (8) and (2).

7: return partition positions, x and ¢ (t) on each segment.

5 Synthetic data experiment of MRS

We use the thinning algorithm [21] to independently gener-
ate 40 sets of observations {{t; }lN:’l };‘21 (N; is the number of
points on /-th observation) on [0, 1000] from a nonstationary
Hawkes process where p’s are 2, 1.5, 1 and triggering ker-
nels are ¢1(t) = 1 - exp(—271), ¢2(tr) = 2 - exp(—47) and
¢3(t) = 3-exp(—4r) distributed on [0, 200], [200, 600] and
[600, 1000], respectively (see Fig. 2). The goal is to find the
underlying partition structure and estimate ©’s and ¢ (t)’s
in a nonparametric way. The highest resolution is set to be
M = 10 (Jsj| = 100), gj(z) is expressed as a histogram
function g (7) = Zle(gfﬁkh) where 4 = 0.75and K = 8.
The hyperparameters M and K are fine tuned here and will
be discussed in Sect. 5.2.
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We average the estimated g;(7) over 40 sets of indepen-
dent observations and Table 1 shows the multi-resolution
segmentation results in a hierarchical manner as R increases
from 1 to the highest resolution 10. We can see when R = 1,
there is no cutting at all; when R = 3, the partition posi-
tions match the ground truth; when R = 10 the algorithm
cuts at every candidate position (the highest resolution). To
quantify the NMSE caused by estimation variance, we show
the proportion of the minimum threshold corresponding to R
over the maximum NMSE in Table 1. We can see the NMSE
induced by estimation variance is below 11.41% (the last cor-
rect cutting is “200” which corresponds to 11.41%), which
means the MRS is robust to obtain the correct segmentation.

Setting R = 3, the correct segmentation [0, 200],
[200, 600], [600, 1000] is obtained. The next step is to
infer p and ¢ (t) on each segment. We empirically estimate
the second-order statistics g(t) on each segment and solve
the Winer—-Hopf equation (8). The estimated 1, = 2.05,
f» = 1.64, [i3 = 1.01 and ¢(7)’s are shown in Fig. 3. We
can see the estimation matches the ground truth.

5.1 Complexity of MRS

In this section, we analyze the computation complexity of
MRS algorithm. The MRS algorithm has a linear computa-
tion complexity which means it is practical. The complexity
of MRS mainly depends on two parameters: the highest res-
olution M and the size of the observation multiplying the
number of bins on g;(7): N K where N' = 3", N,.

The complexity of estimation of g;(7) on each sector is
O(njK) where n ; is the number of points in s ;, consequently,
the complexity of all g;(t) on all independent observations
is O(N'K). The complexity of NMSE between two adjacent
g (t) over M sectors is O(M). Therefore, the final complex-
ity of MRS is O(N'K + M). The running time experiments
over NK (M) given M (N'K) are shown in Fig. 4 which
proves the linear complexity.

We also compare the consuming time of estimation of
¢ () with g(7) to prove the necessity of utilizing cumulants
as features for acceleration. Given 1,896 observation points,
the consuming time of g(7) is 0.5 s but 38.4 s for ¢ (t), which
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Fig.3 The estimated @1 (1), ¢A72(r) and (133 (). The ground truths are 1 - exp(—27), 2 - exp(—47) and 3 - exp(—471), respectively
% Complexity w.r.t. NK Complexity w.r.t. M Table2 Segmentation results of MRS w.r.t. M and K
M 3 10 16 20
= 40 = 6
£ 5 £ Partition positions  333.3, 666.6 200, 600 187.5,687.5 150,350
= = s
= = K 10 20 30 40
E E
g " 34 Partition positions 200,600 200,600 100,200 100, 200
S 1 S
3
0 ; . . . . . . . . . . .
oo me (Sm 4000 5000 o W we w0 w010 Given an appropriate highest resolution M, the perfor-

Fig. 4 The consuming time of MRS (left: w.r.t. N'K given M = 10;
right: w.r.t. M given N K = 31, 547 x 8)

proves replacing ¢ (t) with g(7) is an efficient way to speed
up the inference.

5.2 Hyperparameters

The difference between two adjacent estimated g;(t) and
gj+1(1) is from two sources: the first source is the difference
between E(g; (7)) and E(g;11(7)) which is the nonstation-
arity, the second source is the estimation variance of g; (1)
induced by the choice of hyperparameters. There are two
hyperparameters affecting the performance of MRS: M and
K.

Intuitively, the highest resolution M should not be too
small or too large. If too small, there are few sectors as the
candidate partition positions; consequently, the segmentation
result from MRS degrades. If too large, there will be fewer
points in each sector s ;, which means the estimation variance
of g;j(7) is large, consequently, the segmentation result also
degrades.

Given K = 8, the experiment is performed with M from
3 to 20. The segmentation and NMSE results with R = 3 are
shown in Table 2 and Fig. 5. We can see when M isin[10, 16],
the segmentation from MRS is close to the ground truth;
when M > 20, the estimation variance is overwhelming, as
a result, the partition positions are misidentified.

mance of MRS is also affected by the hyperparameter K . The
reason behind this phenomenon is that as K becomes larger,
there are more bins on g;(7) and the estimated g; = [glj‘. ] ,le
will be overfitting. To show this problem, we perform exper-
iments given the highest resolution M = 10 but with K =
10, 40 and 100. The estimated g; when K = 10, 40 and 100
is shown in Fig. 7 (only the positive half is shown because of
even function). It is clear that the g; with K = 100 is overfit-
ting since there are many spikes up and down. The more bins
we have, the larger the estimation variance of g; () will be,
which will lead to a misidentified segmentation. To prove it,
the segmentation and NMSE results when K = 10, 20, 30
and 40 with R = 3 are shown in Table 2 and Fig. 6. We
can see when K > 30, the segmentation obtained from MRS
does not match the ground truth anymore.

6 A refined MRS algorithm: GP-MRS

Intuitively, a model selection experiment can be performed
to obtain the optimal hyperparameters M and K. Neverthe-
less, for a more robust model, we propose a refined MRS
algorithm: GP-MRS in this section, by using which we do
not need to choose the optimal value of K. We can arbitrarily
set a large K as GP-MRS can prevent it from overfitting.

6.1 Description of GP-MRS

The key idea of GP-MRS is to use a standard GP regression
to smooth the vector g; = [g’j‘.]f:1 in each sector. Given

@ Springer
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Fig.5 Given K = 8, the NMSE of MRS w.r.t. M. The threshold corresponds to R = 3 (Only M = 3, 10, 20 are shown)

NMSE (K=20) NMSE (K=30) NMSE (K=40)
. 0.0008 A = 2
0.0006 === Threshold o === Threshold | po007 - === Threshold
® NMSE ' ® NMSE p ® NMSE
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1 0.0000
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Candidate Partition Positions

' 0.0000
0 100 200 300 400 500 €00 700 800 9001000
Candidate Partition Positions

—t
0 100 200 300 400 500 600 700 800 9001000
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Fig.6 Given M = 10, the NMSE of MRS w.r.t. K. The threshold corresponds to R = 3 (Only K = 20, 30, 40 are shown)

g = [gjl., gjz., el gjl.(] in s, the GP regression is performed
to evaluate the posterior mean functiong ; (rlgjl., g?, ey g]K )
g;(0)=d"Cy'g]. ©)

where C is the matrix of C(t, tp) = ker (tk, ) +0 28k,
{Tk(k/)}lf(k’):l are x-values of K training points and o
is the noise variance of training points, the vector d =
[ker(t1, T), ..., ker(tk, t)]T, g; are y-values of K training
points. Here, the covariance kernel is squared exponential
kernel ker(x, x") = 6pexp (—%‘Hx - x’||2) where 6y and
61 are hyperparameters of GP. We use g;(7) to replace the
directly estimated g; in NMSE (7). By using GP-MRS, the
NMSE induced by overfitting of g;(t) can be effectively
eliminated when K is large (comparison between Figs. 6
and 8).

It is worth noting that GP-MRS cannot be applied to
address the problem of M because a too large M will lead to
a sparse sector where the GP regression cannot provide a true
posterior mean function. To obtain the optimal hyperparam-
eter M, a rule of thumb formula is provided: M ~ N /250L
where L is the number of independent observations.

6.2 Synthetic data experiment of GP-MRS

We apply the GP-MRS algorithm to the same experiment as
in the Sect. 5.2. The GP hyperparameters are fine-tuned to
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Table 3 Segmentation results of GP-MRS w.r.t. K

K 20 30 40 200

Partition positions 200,600 200,600 200,600 200, 600

0p = 1,0 = 1,02 = 0.01. It is out of the scope of this
paper to discuss how to choose the GP hyperparameters. The
estimated g (t) when K = 10, 40 and 100 is shown in Fig. 7.
Itis clear that the g j (7) from GP-MRS is stable whatever K
is. We also analyze the segmentation and NMSE results with
R = 3 which are shown in Table 3 and Fig. 8; we can see
the segmentation and NMSE are both stable whatever K is.
Conclusively, the GP-MRS is more robust than the MRS and
can provide the correct segmentation in cases where the MRS
does not work.

6.3 Complexity of GP-MRS

For a standard GP regression, it costs O (K 3) for matrix inver-
sion when calculating K training points (g; = [gi‘,] ,le ). The
final complexity of GP-MRS is O(N'K + M K?). Unavoid-
ably, the introduce of GP regression into MRS will make it
slower. Given N' = 120,000 and M = 10, the consum-
ing time of GP-MRS when K = 40 is 48.64 s on a normal
desktop. We can see it is still acceptable when K is not too
large.
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Fig.7 Given M = 10, the estimated g; (7) from MRS and GP-MRS when K = 10, 40 and 100
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Fig. 8 Given M = 10, the NMSE of GP-MRS w.r.t. K. The threshold corresponds to R = 3 (Only K = 20, 40, 200 are shown).The NMSE is

nearly unchanged whatever K is

6.4 Comparison with baseline models

As shown, the GP-MRS algorithm is superior to the MRS
algorithm on hyperparameter selection. In this section, we
compare our GP-MRS algorithm with several baseline mod-
els including

— Inhomogeneous Poisson process (IPP): a Poisson process
with a smooth intensity function. The intensity function
is estimated by the algorithm in [26].

— Stationary parametric Hawkes process (SPHP): the vanilla
Hawkes process with constant ¢ and exponential decay
¢ (7). The parameters are estimated by maximum likeli-
hood estimation in [22].

— Stationary nonparametric Hawkes process (SNHP): the
nonparametric Hawkes process with constant p and
nonparametric triggering kernel ¢ (7). The inference is
performed by the Wiener—Hopf method in [3].

— Semi-nonstationary nonparametric Hawkes process
(SNNHP): the Hawkes process with nonstationary p(t)
and stationary nonparametric triggering kernel ¢ (7). The
inference is performed by the maximum penalized like-
lihood estimation in [14].

— Nonstationary nonparametric Hawkes process (NNHP):
the Hawkes process with nonstationary w(¢) and non-

Table 4 Training and test log-likelihood of all models for synthetic
data

IPP  SPHP SNHP SNNHP NNHP
training log-likeihood  50.3  103.2  153.6 1694 192.6
Test log-likeihood 525  80.6 120.1 1483 160.9

stationary nonparametric triggering kernel ¢ (¢, 7). The
inference is performed by our GP-MRS algorithm.

We utilize the same 3-segment experimental setup as in
Sec. 5 to generate two sets of data. One is used as the train-
ing data and the other one as the test data. We measure the
training and test log-likelihood to characterize the fitting and
prediction ability. The result is shown in Table 4 where we
can see the NNHP model with our GP-MRS inference algo-
rithm is better than the alternatives w.r.t. both training and
test log-likelihood due to its superior model expression.

7 Real data experiment

The GP-MRS is applied to a real vehicle collision dataset to
discover the hierarchical time-varying characteristics.
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7.1 Vehicle collisions in New York City

The vehicle collision dataset! is provided by the New York
City Police Department. It contains about 1.05 million vehi-
cle collision records in New York City from July 2012 to
September 2017. The dataset includes the collision date,
time, borough, location, contributing factor and so on.

In daily transportation, the vehicle collision occurring in
the past will increase the intensity of vehicle collision occur-
ring in the future because of the traffic jam caused by the
initial collision, so there exists a triggering effect from the
past collision to the future one. There are already some works
trying to model the triggering effect using classic Hawkes
process (parametric or nonparametric), but they all assume
the stationarity is satisfied. However, this is not the case in real
life. As shown later, we reveal the hierarchical time-varying
characteristics of triggering kernel and baseline intensity of
vehicle collision over 24 h by using the GP-MRS algorithm.

7.1.1 Weekdays

We filter out the collision records on all weekdays from May
1st, 2017 to June 30th, 2017. Some collisions are occurring
at the same time as the data resolution is at a minute level,
which violates the definition of the temporal point process. To
avoid this, we add a small time interval to all the simultaneous
records to separate them.

The observation every day is assumed to be independent,
so there are 45 sets of independent observations. Totally,
137,578 points are observed. We use the GP-MRS for seg-
mentation which is still fast enough in this case. The whole
observation period T is set to 1440 min (24 h a day). The
support of ¢ (7) is set to 8 min. The hyperparameters of GP-
MRS 6y, 61, o2 are setto 1, 1, 0.01 by cross-validation; K
can be arbitrarily set to a large number (20 is used here) and
M is chosen to be 12 by the rule of thumb, which means the
sector size is 120 min (2 h).

When the desired output resolution R = 2, the consuming
time of GP-MRS is about 10 s and the cutting positions are
2:00 and 8:00. The segmentation is shown in Fig. 9 left and
can be understood as the busy time and non-busy time. After
segmentation, we estimate 1 and ¢ (t) on each segment. The
estimated u’s are ;0 = 0.317 and pp = 0.127, the estimated
¢ (t)’sare shownin Fig. 10 left. We can see both 11 and ¢1 (1)
are larger than p, and ¢»(7) which is consistent with our
common sense because the traffic is more crowd in a busy
time. Additionally, the estimated nonparametric triggering
kernel is not strictly monotonic decreasing: there is a small
bump around 5 min after the initial collision, which proves
the superior flexibility of nonparametric estimation.

1 https://data.cityofnewyork.us/Public- Safety/N'Y PD-Motor- Vehicle-
Collisions/h9gi-nx95
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Fig. 9 Weekdays: The 24-h segmentation result of vehicle collisions,
2 segments (left) and 4 segments (right)
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Fig. 10 Weekdays: The estimated ¢ (t) of vehicle collisions, 2 seg-
ments (left) and 4 segments (right)

To show the hierarchical multi-resolution property of GP-
MRS, the desired output resolution R is increased to 4 and
we obtain a finer segmentation. The consuming time in this
case is also about 10 s and the cutting positions are 2:00, 6:00,
8:00 and 20:00. The segmentation is shown in Fig. 9 right.
The segmentation can be understood as the normal time, busy
time and non-busy time. The late night is between 2:00 and
6:00 which are non-busy hours; the after-work entertainment
hours (from 20:00 to 2:00) together with morning commute
hours (from 6:00 to 8:00) are the normal time; the daytime
(from 8:00 to 20:00) is the busy time. The estimated w’s
are 1 = 0.32, up = 0.12, u3 = 0.29 and g = 0.59. The
estimated ¢ (t)’s are shown in Fig. 10 right. Two normal-time
¢ (7)’s are almost overlapping; both the baseline intensity and
triggering kernel of busy time are larger than normal time,
larger than the non-busy time at the initial stage.

7.1.2 Weekends

We also filter out collision records on all weekends from
February 1st, 2017 to August 31st, 2017. With R = 2, the
cutting positions are 2:00 and 8:00 which are same as week-
days. With R = 3, we can get a finer segmentation: 2:00,
8:00 and 12:00. The segmentation is shown in Fig. 11. The
estimated ¢ (t)’s are shown in Fig. 12.

An interesting phenomenon is that the low-resolution
time-varying characteristics of weekdays are similar with
that of weekends, but the high-resolution characteristics are
very different, e.g., 6:00-8:00 becomes the non-busy time


https://data.cityofnewyork.us/Public-Safety/NYPD-Motor-Vehicle-Collisions/h9gi-nx95
https://data.cityofnewyork.us/Public-Safety/NYPD-Motor-Vehicle-Collisions/h9gi-nx95
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Fig. 11 Weekends: The 24-h segmentation result of vehicle collisions,
2 segments (left) and 3 segments (right)
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Fig. 12 Weekends: The estimated ¢ (t) of vehicle collisions, 2 seg-
ments (left) and 3 segments (right)

Table 5 Training and test log-likelihood of all models for vehicle col-
lision data

IPP SPHP SNHP SNNHP NNHP

Training log-likeihood —594.3 —581.6 —567.5 —540.9 —536.9
Test log-likeihood —783.5 —7083 —687.3 —651.6 —637.2

on weekends maybe because of late waking up; 12:00-20:00
becomes the normal time maybe because of less heavy traffic.
The multi-resolution segmentation provides a hierarchical
insight into the dynamic evolution of vehicle collision.

7.2 Comparison with baseline models

As in the synthetic data, we compare the performance of
IPP, SPHP, SNHP, SNNHP and NNHP on the real data. The
training and test log-likelihood of all models on the vehi-
cle collision training and test data (weekdays) is shown in
Table 5 where the NNHP model with our GP-MRS infer-
ence algorithm fits the data best w.r.t. both training and test
log-likelihood.

8 Conclusions

There has been lots of research work made on modeling the
change-point in nonstationary and heterogeneous data. An
interesting and promising approach is the online detection of
change-point in stochastic processes [8,18]. At the current

stage, our proposed MRS algorithm can address the hetero-
geneous sequence data with a batch method. In the future
work, the extension to online learning can be considered.

In this paper, we propose an MRS algorithm to partition
the nonstationary Hawkes process, which provides a hier-
archical view of the nonstationary structure. In this way,
the hierarchical dynamic time-varying characteristics of non-
stationary Hawkes process can be discovered. Besides, the
algorithm is fast because of the utilization of cumulants as
features. After segmentation, the baseline intensity and trig-
gering kernel are estimated in a nonparametric way. Overall,
this is a nonstationary and nonparametric Hawkes process. To
ease the choice of hyperparameter, a refined GP-MRS algo-
rithm is also proposed at the cost of lower efficiency but still
acceptable. Both synthetic and real data experiments show
the superiority of our proposed model over the state of the
arts.
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