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Abstract
The classic Hawkes process assumes the baseline intensity to be constant and the triggering kernel to be a parametric function.
Differently, we present a generalization of the parametric Hawkes process by using a Bayesian nonparametric model called
quadratic Gaussian Hawkes process. We model the baseline intensity and trigger kernel as the quadratic transformation of
random trajectories drawn from a Gaussian process (GP) prior. We derive an analytical expression for the EM-variational
inference algorithm by augmenting the latent branching structure of the Hawkes process to embed the variational Gaussian
approximation into the EM framework naturally. We also use a series of schemes based on the sparse GP approximation
to accelerate the inference algorithm. The results of synthetic and real data experiments show that the underlying baseline
intensity and triggering kernel can be recovered efficiently and our model achieved superior performance in fitting capability
and prediction accuracy compared to the state-of-the-art approaches.

Keywords Hawkes process · Nonparametric · Gaussian process · Variational inference

1 Introduction

A point process is a stochastic process. It has a wide range of
applications. Some examples include seismology (Marsan
and Lengline 2008), financial engineering (Hewlett 2006)
and epidemics (Rizoiu et al. 2018). The occurrence of an
event (e.g. the happening of a disease infection or an earth-
quake) is treated as a point in a point process on the time
axis or the 2-dimensional plane. The Poisson process (Daley
and Vere-Jones 2003) and Hawkes process (Hawkes 1971)
are two of the most common point processes and they are
used to statistically describe the pattern of the occurrence of
events.
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The Hawkes process can be used as an intensity estima-
tor to model the self-exciting phenomenon in a wide range of
applications such as traffic accidents (Zhou et al. 2018), crim-
inology (Mohler et al. 2011) and high-frequency financial
trades (Bacry et al. 2015). The Hawkes process uses the past
events to calculate the probability of the future events occur-
ring. Choosing a function for the baseline intensity and the
triggering kernel is a fundamental challenge in Hawkes pro-
cess. For the classic parametric Hawkes process, the baseline
intensity is assumed to be constant and the triggering kernel
is assumed to be a parametric function such as an exponen-
tial or power-law decay function (Bacry et al. 2015). The
parametric assumption leads to convenient inference, how-
ever, this assumption is inconsistent with reality in many
applications (Mohler et al. 2011; Wheatley et al. 2018). In
this situation, the data driven nonparametric approaches are
desirable.

The nonparametric Hawkes process is a flexible model
that is able to learn the unknown function for the baseline
intensity and triggering kernel. For example, Marsan and
Lengline (2008) proposed the independent stochastic declus-
teringmethod to estimate the nonparametric triggering kernel
in an EM framework; Lewis andMohler (2011) extended this
algorithm to nonparametric baseline intensity with the Euler-
Lagrange equation; Bacry and Muzy (2016) analyzed the
relation between the triggering kernel and the second order
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statistics of its counting process to propose an estimation
method based on the Wiener–Hopf equation. Eichler et al.
(2017) andReynaud-Bouret et al. (2010) assumed the trigger-
ing kernel is a piece-wise constant function and established
a quadratic loss to be minimized. Deep learning frameworks
have also been explored such as the neural Hawkes pro-
cess (Mei and Eisner 2017) which used long short-term
memory (LSTM) to model the intensity function. However,
all previous approaches are frequentist nonparametric algo-
rithmswhich are based on the likelihood function only. These
approaches are problematic because they are prone to over-
fitting when they do not have the appropriate regularization.

In this paper, we propose a Bayesian nonparametricmodel
for Hawkes process to model a non-constant baseline inten-
sity and a nonparametric triggering kernel with continuous
changes. We relieve any parametric assumptions to smooth
the baseline intensity and triggering kernel. The Bayesian
priors on both components are the quadratic transformation
of GP which have theoretical guarantees to be non-negative.
In this setting, the inference can be performed without
gridding the domain. We utilize the variational Gaussian
approximation (Opper and Archambeau 2009) for model
inference. However, the inference has two major challenges:
(1) The baseline intensity is coupled with the triggering
kernel in the likelihood function of the Hawkes process,
which drastically increases the complexity of performing
inference. We address this issue by augmenting the branch-
ing structure of the Hawkes process to decouple them. The
branching structure is a latent variable and is estimated via an
expectation-maximization (EM) algorithm (Dempster et al.
1977). The variational Gaussian approximation is embedded
into an EM framework naturally. (2) In the past, Zhang et al.
(2019) have proposed to use a variational Gaussian approxi-
mation for Hawkes processes in similarmanner, however, the
formulation of the baseline intensity was still constant and
their inference is performed by high dimensional numerical
optimization which is time-consuming let alone embedded
into EM iterations. We circumvent this issue by applying
the mean-field assumption to derive a closed-form matrix
derivative to speed up the inference. Synthetic and real data
experimental results show that the flexible baseline inten-
sity and triggering kernel can be recovered and our model
is superior w.r.t. fitting capability and prediction accuracy
compared to the state-of-the-art techniques. We summarize
the contributions presented in the paper as follows:

(1) The baseline intensity and triggering kernel are both
relieved to be nonparametric functions that are modulated by
a quadratic transformation of a GP.

(2) The variational Gaussian approximation is embed-
ded into an EM framework. The complexity of the EM-
variational (EMV) algorithm scales linearly with the number
of observations.

(3)We utilize the sparse GP approximation and the mean-
field assumption to derive the closed-form matrix derivative
of the evidence lower bound (ELBO) to further accelerate
EMV to be efficient.

The paper is structured as follows: Sect. 2 presents an
overview of the quadratic Gaussian Hawkes process model
where we explain how the baseline intensity and triggering
kernel are modeled as smooth functions modulated by GP.
Section 3 presents the naïve EMV inference algorithm. We
then present an accelerated version of the inference algo-
rithm in Sect. 4. The synthetic and real data experiments are
summarized in Sect. 5, and conclusions are given in Sect. 6.

2 Quadratic Gaussian Hawkes process

A Hawkes process is a stochastic process that is realized
through a sequence of timestamps D = {ti }Ni=1 ∈ [0, T ].
We denote ti to be the time of occurrence for the i-th event
and T is the observation window of this process. The condi-
tional intensity function is an important way to characterize
a Hawkes process so that it is able to capture the temporal
dynamics. The conditional intensity function λ(t) is defined
as the probability of an event occurring in an infinitesimal
time interval [t, t +dt) given historical timestamps before t ,
{ti |ti < t}.

The specific form of the conditional intensity for the
Hawkes process is

λ(t) = μ(t) +
∑

ti<t

φ(t − ti ) (1)

where μ(t) > 0 is the baseline intensity and φ(τ) > 0
(τ = t − ti ) is the triggering kernel. In the classic Hawkes
process, μ(t) is assumed to be constant and φ(τ) is a para-
metric function such as the exponential decay function. The
summation of triggering kernels explains the nature of self-
excitation. The non-negativity of μ(t) and φ(τ) guarantees
the intensity is non-negative almost surely. Given μ(t) and
φ(τ), the Hawkes process likelihood (Daley and Vere-Jones
2003) is written as

p(D|μ(t), φ(τ )) =
N∏

i=1

⎡

⎣μ(ti ) +
∑

t j<ti

φ(ti − t j )

⎤

⎦

exp

(
−
∫

T

(
μ(t) +

∑

ti<t

φ(t − ti )

)
dt

)
.

(2)

We propose the quadratic Gaussian Hawkes process
(QGHP) which formulates the baseline intensity and trig-
gering kernel as the quadratic transformation of random
trajectories drawn from GP priors to guarantee the non-
negativity, that is μ(t) = f 2(t), φ(τ ) = g2(τ ) where f
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and g are two functions drawn from the corresponding GP
prior. It is worth noting that, in this paper, μ(t) and φ(τ) are
defined on the support of [0, T ] and [0, Tφ] respectively and
the value of f (t) and g(τ ) outside the corresponding inter-
vals will be ignored. The quadratic link function (Flaxman
et al. 2017; Lloyd et al. 2015) is used because the inference
can be performed in closed form and the variance of the vari-
ational distribution is related with the data. For more details
about the advantage of utilizing the quadratic link function,
please refer to Lloyd et al. (2015, Section 5).

We also propose an EMV algorithm for the inference:
embedding the variational Gaussian approximation into an
EM framework. Using a naïve Bayesian framework, the
inference of posterior of μ(t) and φ(τ) is non-trivial due
to intractable integrals in the numerator and denomina-
tor. The doubly-intractable problem has been introduced in
Adams et al. (2009). In the following section we present our
proposed inference approach that tactfully solves the doubly-
intractable problem without gridding the domain.

3 Inference

In this section, we present our key technical contribution on
the inference algorithm. We first present using sparse GP
approximation to avoid the functional optimization prob-
lem. Secondly we augment the branching structure of the
Hawkes process to decouple the log-likelihood to two inde-
pendent components. Thirdly we use a variational Gaussian
approximation for the inference in each component. Finally
we combine them together to obtain the EMV algorithm.

3.1 Sparse GP approximation

The sparse GP approximation (Titsias 2009) has been used
to improve the efficiency and avoid the functional opti-
mization issue. f and g are supposed to be dependent on
their corresponding inducing points (definition of induc-

ing points is provided in Titsias (2009)) Z f = {zmf }
M f
m=1

and Zg = {zmg }Mg
m=1; the function values of f and g at

these inducing points are u f and ug which are station-
ary and Gaussian distributed as u f ∼ N (0,Kz f z f ) and
ug ∼ N (0,Kzgzg ). Given a sample u f and ug , f and
g are assumed to be f |u f ∼ GP(v f (t),Σ f (t, t ′)) and
g|ug ∼ GP(vg(τ ),Σg(τ, τ

′)) with mean and covariance

v f (t) = kt z f K
−1
z f z f u f ,Σ f (t, t

′) = ktt ′ − kt z f K
−1
z f z f kz f t ′

vg(τ ) = kτ zgK
−1
zgzgug,Σg(τ, τ

′) = kττ ′ − kτ zgK
−1
zgzgkzgτ ′

with kt z f and kτ zg being the kernel vector w.r.t. observations
and inducing points while Kz f z f , Kzgzg , ktt ′ and kττ ′ being
kernel matrices or values w.r.t. inducing points or observa-

tions only. Therefore, the joint distribution of the Hawkes
process is

p(D, f , u f , g, ug) =p(D|μ(t) = f 2, φ(τ ) = g2)

p( f |u f )p(g|ug)p(u f )p(ug).
(3)

3.2 Augmentation of branching structure

The evidence lower bound needs to be obtained for varia-
tional inference (Blei et al. 2017). This means f , u f , g and
ug need to be integrated out in Eq. (3). However, performing
this procedure directly is difficult because μ(t) is coupled
with φ(τ) in the likelihood.

The branching structure of Hawkes process (Marsan and
Lengline 2008; Zhou et al. 2013) is introduced to facilitate
inference by decouplingμ(t) and φ(τ). The branching struc-
ture X is a triangular matrix with Bernoulli variables xi j
indicating if the i-th event is triggered by itself or a previous
event j .

xii =
{
1 if event i is a background event

0 otherwise

xi j =
{
1 if event i is caused by event j, i �= j

0 otherwise

After introducing branching structure, we obtain a lower-
bound Q(μ(t), φ(τ )|μ(s)(t), φ(s)(τ )) of the log-likelihood
where superscript s denotes the last iteration (proof in
“Appendix A”).

Q(μ(t), φ(τ )|μ(s)(t), φ(s)(τ ))

= EX
[
log p(D,X|μ(t), φ(τ ))

]

=
N∑

i=1

pii log(μ(ti )) −
∫ T

0
μ(t)dt

︸ ︷︷ ︸
μ

(t) part+

N∑

i=2

i−1∑

j=1

pi j log
(
φ(ti − t j )

)−
N∑

i=1

∫ ti+Tφ

ti
φ(t − ti )dt

︸ ︷︷ ︸
φ

(τ ) part

� log p̃(D|μ(t),Pi i ) + log p̃(D|φ(τ),Pi j ),

(4)

where p̃means an unnormalized density; Tφ is the support of
triggering kernel; we can see the lower-bound is decoupled to
two independent parts:μ(t) part and φ(τ) part; pi j = E(xi j )
can be understood as the probability that i-th event is affected
by a previous event j and pii is the probability that i-th event
is a baseline event. Specifically, it is derived as
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pi j = φ(s)(τi j )

μ(s)(ti ) +∑i−1
j=1 φ(s)(τi j )

,

pii = μ(s)(ti )

μ(s)(ti ) +∑i−1
j=1 φ(s)(τi j )

.

(5)

3.3 Variational Gaussian approximation

Now the inference can be performed for two components
independently because μ(t) and φ(τ) have been decoupled.

3.3.1 Baseline intensity

For the μ(t) part: log p̃(D|μ(t) = f 2,Pi i ). Pi i means the
diagonal entries of P = E(X). We integrate out inducing
points u f using a Gaussian variational distribution q(u f ) =
N (u f |m f ,S f ). We use Jensen’s inequality to obtain the
ELBO for the μ(t) part:

log p̃(D|Pi i )

= log

[∫∫
p̃(D| f ,Pi i )p( f |u f )p(u f )

q(u f )

q(u f )
du f d f

]

≥
∫∫

p( f |u f )q(u f )du f log p̃(D| f ,Pi i )d f

+
∫∫

p( f |u f )q(u f )d f log

[
p(u f )

q(u f )

]
du f

= Eq( f )
[
log p̃(D| f ,Pi i )

]− KL
(
q(u f )||p(u f )

)

� ELBOμ,

(6)

where

q( f ) =
∫

p( f |u f )q(u f )du f = GP( f |ṽ f (t), Σ̃ f (t, t
′))

(7)

with the mean ṽ f (t) = kt z f K
−1
z f z f m f and the covariance

Σ̃ f (t, t ′) = ktt ′−kt z f K
−1
z f z f kz f t ′+kt z f K

−1
z f z f S fK−1

z f z f kz f t ′ .

The KL
(
q(u f )||p(u f )

)
term has an analytical solution

because both elements areGaussian distributions. The expec-
tation of log-likelihood over q( f ) can be written as

Eq( f )
[
log p̃(D| f ,Pi i )

] =
N∑

i=1

piiEq( f )

[
log f 2(ti )

]

−
∫ T

0

{
E
2
q( f )[ f (t)] + Varq( f )[ f (t)]

}
dt,

(8)

where we utilize E(A2) = E
2(A) +Var(A). Eq. (8) also has

an analytical solution shown in “Appendix B”.

3.3.2 Triggering kernel

For the φ(τ) part: log p̃(D|φ(τ) = g2,Pi j ). Pi j means the
entries off diagonal of P = E(X). Similarly, we integrate
out inducing points ug using q(ug) = N (ug|mg,Sg). The
ELBO for the φ(τ) part is

log p̃(D|Pi j )

= log

[∫∫
p̃(D|g,Pi j )p(g|ug)p(ug)q(ug)

q(ug)
dugdg

]

≥ Eq(g)
[
log p̃(D|g,Pi j )

]− KL
(
q(ug)||p(ug)

)

� ELBOφ, (9)

where q(g) is Eq. (7) with notation f and t replaced by g and
τ , respectively. The KL term has an analytical solution and
the expectation of log-likelihood over q(g) can be written as

Eq(g)
[
log p̃(D|g,Pi j )

] =
N∑

i=2

i−1∑

j=1

pi jEq(g)

[
log g2(τi j )

]

−
N∑

i=1

∫ Tφ

0

{
E
2
q(g)[g(τ )] + Varq(g)[g(τ )]

}
dτ (10)

with analytical solution shown in “Appendix B”.

3.4 EM-variational algorithm

In this section we present the EMV inference algorithm to
infer μ(t) and φ(τ). By augmenting branching structure, we
obtain a surrogate function (lower-bound) decoupling μ(t)
and φ(τ) to two independent components (E step). For each
component, we utilize variational Gaussian approximation to
derive an ELBO which should be maximized, thus obtaining
an optimal variational distribution (M step).

The radial basis function kernel is used as the GP covari-
ance kernel throughout this paper. The hyperparameters θ0

and θ1 of k(x, x ′) = θ0 exp
(
− θ1

2 ‖x − x ′‖2
)
are optimized

by performing maximization of ELBO over {θ0, θ1} using
numerical packages.

Apart from θ0 and θ1, the hyperparameters left are the
number and location of inducing points. The number of
inducing points M is a trade-off between complexity and
accuracy. A large M corresponds to a high dimensional Kzz

leading to high complexity, while a small M cannot charac-
terize the dynamics of functions.

In our experiments, we assume the inducing points are
uniformly located on the support and gradually increase the
number until the resultingμ(t) orφ(τ) is not improvedmuch
any more. The pseudocode of naïve EMV is shown in Algo-
rithm 1.
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Algorithm 1: Naïve EMV algorithm
Result: μ(t), φ(τ)

Initialize hyperparameters and P;
for do

Update P by Eq. (5);
Update m∗

f , S
∗
f ,m

∗
g and S∗

g by

m∗
f ,S

∗
f = argmaxm f ,S f

(
ELBOμ

)
and

m∗
g,S

∗
g = argmaxmg ,Sg

(
ELBOφ

)
;

Update ṽ∗
f , Σ̃

∗
f , ṽ

∗
g and Σ̃∗

g by Eq. (7) with m∗
f , S

∗
f , m

∗
g

and S∗
g ;

Update μ(t) and φ(τ) by μ(t) = (ṽ∗
f )

2 + σ̃ 2∗
f ,

φ(τ) = (ṽ∗
g)

2 + σ̃ 2∗
g where we utilize

E(A2) = E
2(A) + Var(A), σ̃ 2∗

f and σ̃ 2∗
g are diagonal

entries of Σ̃∗
f and Σ̃∗

g ;
Update hyperparameters.

end

4 Inference acceleration

The naïve implementation of EMV algorithm (Algorithm 1)
is computationally expensive. The bottleneck is the update of
m∗

f ,S
∗
f ,m

∗
g andS

∗
g due to numerical optimization. Supposing

the number of inducing points u f is M f , the dimensional-
ity of the search space for optimization over m f and S f is
M f + M f (M f + 1)/2. The space is large even when M f is
small (the case is the same for ug). We develop two schemes
to speed up the algorithm: (1)we prove that the optimal vari-
ational mean m∗ is analytically zero, (2) the complexity is
reduced by using mean-field assumption and we derive the
closed-form matrix derivative of ELBO w.r.t. S.

4.1 Optimal variational mean

The transformation function is μ(t) = f 2 and it is not a
bijection. For every μ(t), there will be two positive-negative
symmetric f (t)’s. The posterior of f can be written as

p( f |D,Pi i ) ∝
p(D|μ(t) = f 2,Pi i )GP( f |u f )N (u f |0,Kz f z f ),

where the likelihood is symmetric with f and − f . For
the prior GP( f |u f )N (u f |0,Kz f z f ), we can integrate out
u f and the marginal distribution over f is still Gaus-
sian with a mean of 0. Therefore, the prior of f is also
symmetric. Conclusively, the posterior p( f |D,Pi i ) is sym-
metric. By using variational Gaussian approximation, we
are approximating p( f |D,Pi i ) by a normal distribution
q( f ) = GP( f |ṽ f (t), Σ̃ f (t, t ′)), ṽ f (t) = kt z f K

−1
z f z f m f .

It is easy to see m∗
f = 0 definitely; this applies to the φ(τ)

part as well to obtain m∗
g = 0.

4.2 Optimal variational covariance

With the setting ofm∗ = 0, the update form∗
f ,S

∗
f ,m

∗
g andS

∗
g

becomes the maximization of ELBO over S only. We derive
the closed-form matrix derivative of ELBO over S (proof in
“Appendix C”)

∂ELBOμ

∂S f
= −(2K−1

z f z f Ψ fK−1
z f z f − K−1

z f z f Ψ fK−1
z f z f ◦ I)

+
N∑

i=1

pii

(
2K−1

z f z f kz f tikti z f K
−1
z f z f

− K−1
z f z f kz f tikti z f K

−1
z f z f ◦ I

)
/σ̃ 2

f (ti )

− 1

2

(
2K−1

z f z f − K−1
z f z f ◦ I − (2S−1

f − S−1
f ◦ I)

)
,

∂ELBOφ

∂Sg
= −

N∑

i=1

(2K−1
zgzgΨgK−1

zgzg − K−1
zgzgΨgK−1

zgzg ◦ I)

+
N∑

i=2

i−1∑

j=1

pi j

(
2K−1

zgzgkzgτi jkτi j zgK
−1
zgzg

− K−1
zgzgkzgτi jkτi j zgK

−1
zgzg ◦ I

)
/σ̃ 2

g (τi j )

− 1

2

(
2K−1

zgzg − K−1
zgzg ◦ I − (2S−1

g − S−1
g ◦ I)

)
,

(11)

where I denotes the identitymatrix, ◦ denotes the Hadam-ard
(elementwise) product and σ̃ 2

f (ti ) = θ
f
0 −kti z f K

−1
z f z f kz f ti +

kti z f K
−1
z f z f S fK−1

z f z f kz f ti is the diagonal of Σ̃ f (t, t ′) and

σ̃ 2
g (τi j ) = θ

g
0 −kτi j zgK

−1
zgzgkzgτi j +kτi j zgK

−1
zgzgSgK

−1
zgzgkzgτi j

is the diagonal of Σ̃g(τ, τ
′).

Intuitively, by setting Eq. (11) to 0, the optimal variational
covariance can be obtained. However, it is still inefficient
because M f (M f + 1)/2 equations are in the nonlinear sys-
tem. To further accelerate the inference algorithm, S f and
Sg are assumed to be diagonal (mean field approximation
(Bishop 2007)) so that Eq. (11) can be further simplified. We
derive the simplified matrix derivative in the diagonal case
(proof in “Appendix C”)

∂ELBOμ

∂S f
= −K−1

z f z f Ψ fK−1
z f z f ◦ I

+
N∑

i=1

pii
K−1

z f z f kz f tikti z f K
−1
z f z f ◦ I

σ̃ 2
f (ti )

−1

2

(
K−1

z f z f ◦ I − S−1
f

)
,

∂ELBOφ

∂Sg
= −

N∑

i=1

K−1
zgzgΨgK−1

zgzg ◦ I
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+
∑

i, j

pi j
K−1

zgzgkzgτi jkτi j zgK
−1
zgzg ◦ I

σ̃ 2
g (τi j )

−1

2

(
K−1

zgzg ◦ I − S−1
g

)
. (12)

In practice, Eq.(12) can be used as a gradient expression for
any gradient-based optimization packages. In experiments,
we find the diagonal assumption does not make much differ-
ence when the underlying function value (μ(t) or φ(τ)) does
not change drastically. The accelerated EMV is provided in
Algorithm 2.

Algorithm 2: Accelerated EMV
Result: μ(t), φ(τ)

Initialize hyperparameters and P;
for do

Update P by Eq. (5);
Update S∗

f and S∗
g by ∂ELBOμ/∂S f = 0 and

∂ELBOφ/∂Sg = 0 using Eq. (12);
Update Σ̃∗

f and Σ̃∗
g by Eq. (7) with S∗

f and S∗
g ;

Update μ(t) and φ(τ) by μ(t) = σ̃ 2∗
f and φ(τ) = σ̃ 2∗

g

where we utilize E(A2) = E
2(A) + Var(A), σ̃ 2∗

f and σ̃ 2∗
g

are diagonal entries of Σ̃∗
f and Σ̃∗

g ;
Update hyperparameters.

end

4.3 Complexity

The complexity of matrix inversion is reduced to O(M3
f +

M3
g ) where M f (or Mg) � N because of the sparse GP

approximation. This results in a complexity scaling linearly
with data size: O(N ) multiplied by a constant L where L =∫
Tφ

μ(t)
1−∫ φ(τ)dτ

dt � N because of the sparsity of branching

structure pi j = 0: previous points more than Tφ far away
from i-th point have no influence on i-th point.

Our experiment is conducted on a desktop computer
(CPU: i7-6700 with 8GB RAM). The runtime of the naïve
implementation (Algorithm 1) is more than 2 h with N =
205, 6 inducing points for both Z f and Zg and 100 EM iter-
ations. The accelerated Algorithm 2 costs only 4 min in the
same setting, which drastically reduces the running time.

5 Experimental results

We evaluate the fitting and prediction ability of our proposed
QGHPmodel in both synthetic and real data experiments.We
compare our approach with the following baseline models:

• Gaussian-Cox (GC) process: a GP modulated inhomo-
geneous Poisson process. The inference is performed by

the algorithm in Samo and Roberts (2015). It is only for
real data.

• RKHS-Cox (RKHSC) process: an inhomogeneous Pois-
son processwhose intensity is estimated by a reproducing
kernel Hilbert space formulation (Flaxman et al. 2017).
It is only for real data.

• Parametric Hawkes (PH) process: the classic Hawkes
process with constant baseline intensity and exponential
decay triggering kernel. The inference is performed by
maximum likelihood estimation.

• Model independent stochastic declustering (MISD): the
MISD(Lewis andMohler 2011) is anEM-basednonpara-
metric algorithm for Hawkes process, where the baseline
intensity is constant and the triggering kernel is dis-
cretized to be a histogram function. We useMISD-# (# is
the number of bins) to indicate the corresponding model.

• Wiener–Hopf (WH): a nonparametric Hawkes process
inference algorithm with constant baseline intensity and
smooth triggering kernel. The inference is performed by
the solution of aWiener–Hopf equation (Bacry andMuzy
2016).

• Variational Bayesian Hawkes process (VBHP): a Bay-
esian nonparametric Hawkes process with constant base-
line intensity and smooth triggering kernel. The inference
is performed by variational inference (Zhang et al. 2019).

5.1 Synthetic data experiments

In our synthetic data experiment, we compare the fitting
and prediction ability of our model to that of PH, MISD-
10, MISD-20,WH and VBHP. It is worth noting that GC and
RKHSC are excluded because they are Poisson process mod-
elswhich cannot provide the baseline intensity and triggering
kernel.

We consider a general scenario with time changing base-
line intensity and non-exponential triggering kernel

μ(t) = sin

(
2π

T
· t
)

+ 1 (0 < t < T )

φ(τ) =
{
0.25 sin τ (0 < τ ≤ π)

0 (π < τ < Tφ)

and use the thinning algorithm (Ogata 1998) to generate two
sets of observations with one being the training data and the
other one the test data. With Tφ = 6 and T = 400, 1716
points are obtained for the training and test data which is
shown in Fig. 1a. Our goal is to estimate the baseline intensity
and triggering kernel based on the observations.

Metrics To compare the fitting and prediction ability of
different models, we utilize multiple metrics including train-
ing and test log-likelihood (LogLik), and estimation error
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Fig. 1 Experimental results of synthetic and real data. a The simu-
lated points and intensity function of training and test datasets. b and c
The estimated μ̂(t) and φ̂(τ ) of the synthetic data of all models. d0 The
training and test log-likelihood curve of EMV algorithmw.r.t. iterations

for the synthetic data. e and f The training LogLik of various models
over the number of training data for vehicle collision and taxi pickup,
respectively

(EstErr) which is defined as the integral mean squared error
between the estimated φ̂(τ ) (μ̂(t)) and the ground truth.

Results In experiments, the hyperparameters in all models
are fine tuned to obtain the optimal test log-likelihood. For
our EMV algorithm, 10 and 8 inducing points are uniformly
located on the support of μ(t) and φ(τ) by cross validation.
The estimated μ̂(t) and φ̂(τ ) of all models are shown in Fig.
1b and c where the result obtained from EMV algorithm is
the closest to the ground truth. The training and test Log-
Lik, and EstErr results are shown in Table 1 where we can
see our QGHP model outperforms the alternatives w.r.t. all
metrics. This is because only our QGHP model is capable
of estimating nonparametric μ(t) and φ(τ) simultaneously,
which leads to a better goodness-of-fit. As shown in Fig. 1d,
our EMV algorithm converges fast with only 10 iterations
needed to reach a plateau.

5.2 Real data experiments

In our real data experiment,we apply ourQGHPmodel to two
different datasets, estimate the baseline intensity and trigger-
ing kernel based on observations using EMV algorithm and
compare its performance to the state-of-the-art approaches.

Vehicle Collisions1 The vehicle collision dataset is from
New York City Police Department. We filter out weekday
records in almost one month (Sep.18th–Oct.13th 2017). The
number of collisions in each day is about 600. Records in
Sep.18th-Oct.6th are used as training data and Oct.9th–13th
are held out as test data.

The car collision can be modelled as a self-exciting
phenomenon because there will be triggering influence on
subsequent accidents caused by the traffic congestion caused
by the initial accident. In the past, the nonparametric Hawkes
processes have been applied to the transportation domain so
that the triggering kernel is relieved to be nonparametric, but
the baseline intensity is still a constant in approaches such
as MISD or WH. This is an inappropriate hypothesis in the
vehicle collision application because there are many situa-
tions where the baseline is not constant. For example the road
is quiet at night so the baseline intensity of car accidents is
lower than that in the normal time and the traffic is so busy at
peak times that the baseline intensity will be increased. Our
proposed QGHP provides a solution that is able to learn both

1 https://data.cityofnewyork.us/Public-Safety/NYPD-Motor-Vehicle-
Collisions/h9gi-nx95.
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Table 1 Training and test
LogLik (larger values indicate
better performance), and EstErr
(smaller values indicate better
performance) of synthetic data
of all models

PH MISD-10 MISD-20 WH VBHP EMV

Training LogLik 127.84 130.48 134.95 90.78 132.75 149.29

Test LogLik − 12.11 − 16.13 − 24.23 − 45.43 − 14.64 − 9.17

EstErr(μ̂(t), μ(t)) 549.69 531.09 535.54 248.79 235.99 15.98

EstErr(φ̂(τ ), φ(τ)) 0.116 0.051 0.076 0.061 0.052 0.018

the time-changing baseline intensity and a flexible triggering
kernel simultaneously.

We compare the fitting and prediction ability of EMV,
VBHP, WH, MISD-6, MISD-8, PH, RKHSC and GC. The
whole observation period T is set to 1440 min (24 h) and
the support of triggering kernel Tφ is set to 60 min. For the
hyperparameters, the bandwidth of WH is selected to be 1.2
using cross-validation, and there are 6 inducing points on
φ(τ) (Mg = 6) and 8 inducing points on μ(t) (M f = 8) for
EMV. The hyperparameters for RKHSC, GC and VBHP are
chosen based on a grid search to minimize the error between
the integral of learned intensity and the average number of
timestamps on each sequence. The final result is the average
of learned μ̂(t) or φ̂(τ ) of each day.

Taxi Pickup2 This dataset includes trip records from all
trips completed in green taxis inNewYorkCity from January
to June 2016. For the experiments, we select the data from
Jan.7th to Feb.1st to be the training data and Jan.2nd–6th
is held out as test data. In this period, we filter out pickup
dates and times for long-distance trips (> 15 miles) since
long-distance trips usually have different patterns compared
to shorter trips. The average number of pickups each day is
about 400.

We also compare the fitting and prediction ability of all
models on the taxi pickup dataset with the same setup with
vehicle collision. The whole observation period T is set to
24 h and the support of triggering kernel Tφ is set to be 1 h.

Metrics The EstErr cannot be used as a metric because
the ground truth is unknown for real world data. Instead, we
use the training LogLik and prediction accuracy (PreAcc) as
metrics to measure the fitting and prediction ability respec-
tively. Given an event sequence {t1, ..., ti−1}, themean arrival
time of next point ti is estimated as E[ti ] = ∫∞

ti−1
tp(ti =

t)dt where p(ti = t) = λ(t) exp
(
− ∫ tti−1

λ(s)ds
)
. The

intractable integral canbe estimatedusingMonteCarlometh-
ods. The PreAcc is defined as the percentage of points whose
predicted arrival time is within an error bound of the true
arrival time.

Results For the fitting task, we evaluate the training Log-
Lik of various models when the number of training data
varies for each dataset. The training LogLik of EMV and

2 https://data.cityofnewyork.us/Transportation/2016-Green-Taxi-
Trip-Data/hvrh-b6nb.

other baseline models for both real datasets are shown in
Fig. 1e and f. We observe that PH, MISD-6, MISD-8, WH,
VBHP and EMV outperform GC and RKHSC (which are
both inhomogeneous Poisson processes); this demonstrates
the necessity of using Hawkes process to discover the under-
lying self-exciting phenome-non in both real datasets. In
addition, our EMV algorithm is consistently superior to all
other Hawkes process inference algorithms (PH,MISD,WH
and VBHP) which have assumptions on the baseline inten-
sity or triggering kernel restricting their ability to capture the
dynamics. This demonstrates that our EMV algorithm pos-
sesses the better goodness-of-fit because it has the flexibility
to describe the nonparametricμ(t) and φ(τ) simultaneously.
The learned baseline intensities for two datasets are shown
in Fig. 2, which provides support for our speculation that the
baseline intensity at midnight (2:00 a.m.–4:00 a.m.) is much
lower than that in the daytime (6:00 a.m.–18:00 p.m.) for car
accidents and taxi pickups.

In the prediction task, we measure the PreAcc of all alter-
natives on both datasets. We assume only the top 17% of a
sequence is observed (the error bound ε = 0.12 for vehicle
collision and 0.24 for taxi pickup, 500 samples for Monte
Carlo integration) and then predict the time of next event,
and then the real time of next event is incorporated into the
observed data and then predict the further next one and the
iteration goes on.The averagePreAcc of the test data is shown
in Table 2 where we can observe that EMV is superior to the
alternatives.

6 Conclusion

In the classic Hawkes process, the baseline intensity and trig-
gering kernel are assumed to be a constant and a parametric
function respectively, which is convenient for inference but
leads to limited capability for model expression. To further
generalize the model and perform inference from a Bayesian
perspective, we apply the quadratic transformation of GP
as prior on the baseline intensity and triggering kernel and
solve it with an EM-variational inference algorithm. We use
the sparse GP approximation and the mean-field assumption
to derive a closed-form matrix derivative of the ELBO to
make the inference more efficient. Our experimental results
have show that our model can achieve a better fitting and
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Fig. 2 The estimated baseline
intensity μ̂(t) for two real
datasets, a vehicle collisions; b
taxi pickup

Table 2 The PreAcc of all alternatives on both real datasets

Vehicle collision (%) Taxi pickup (%)

GC 17.3 53.8

RKHSC 29.2 64.0

PH 60.6 67.1

MISD-6 67.6 68.3

MISD-8 67.6 67.9

WH 67.3 67.5

VBHP 67.8 67.7

EMV 71.7 70.4

prediction performance than the state-of-the-art approaches
for both synthetic and real datasets. Further investigation
includes the extension to multivariate Hawkes process with
sharing properties on the triggering kernels and the more
general spatial-temporal process model where the triggering
kernel is defined on a multi-dimensional space.

Appendices

A Proof of lower-bound

The lower-bound Q(μ(t), φ(τ )|μ(s)(t), φ(s)(τ )) in Eq. (4)
is induced as follows. Based on Jensen’s inequality, we have

log p(D|μ(t), φ(τ )) =
N∑

i=1

log

⎛

⎝μ(ti ) +
i−1∑

j=1

φ(ti − t j )

⎞

⎠

−
∫ T

0

(
μ(t) +

∑

ti<t

φ(t − ti )

)
dt

≥
N∑

i=1

⎛

⎝pii log
μ(ti )

pii
+

i−1∑

j=1

pi j log
φ(ti − t j )

pi j

⎞

⎠

−
∫ T

0
μ(t)dt −

N∑

i=1

∫ ti+Tφ

ti
φ(t − ti )dt

=
N∑

i=1

pii logμ(ti ) −
∫ T

0
μ(t)dt

+
N∑

i=2

i−1∑

j=1

pi j logφ(ti − t j ) −
N∑

i=1

∫ ti+Tφ

ti
φ(t − ti )dt + C

(13)

where C is a constant because pii and pi j are given in the
E-step.

B Analytical solution of ELBO

The KL
(
q(u f )||p(u f )

)
can be written as

KL
(
q(u f )||p(u f )

) =1

2

[
Tr(K−1

z f z f S f ) + log
|Kz f z f |
|S f |

− M f + mT
f K

−1
z f z f m f

]
,

(14)

where Tr(·) means trace, | · | means determinant and M f is
the dimensionality of u f .

The last two terms in Eq. (8) have analytical solutions
(Lloyd et al. 2015)

∫ T

0
E
2
q( f )[ f (t)]dt = mT

f K
−1
z f z f � fK−1

z f z f m f , (15)
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∫ T

0
Varq( f )[ f (t)]dt =θ

f
0 T − Tr(K−1

z f z f � f )+
Tr(K−1

z f z f S fK−1
z f z f � f ),

(16)

where Ψ f (z f , z′f ) = ∫ T0 k(z f , t)k(t, z′f )dt . For the squared
exponential kernel, Ψ f can be written as (Lloyd et al. 2015)

Ψ f (z f , z
′
f ) = − (θ

f
0 )2

2

√
π

θ
f
1

exp

⎛

⎝−θ
f
1 (z f − z′f )2

4

⎞

⎠

[
erf

(√
θ
f
1 (z̄ f − T )

)
− erf

(√
θ
f
1 z̄ f

)]
,

(17)

where erf(·) is Gauss error function and z̄ f = (z f + z′f )/2.
The first term in Eq. (8) also has an analytical solution

(Lloyd et al. 2015)

Eq( f )

[
log f 2(ti )

]

=
∫ ∞

−∞
log f 2(ti )N ( f (ti )|ṽ f (ti ), σ̃

2
f (ti ))d f (ti )

= −G̃

(
− ṽ2f (ti )

2σ̃ 2
f (ti )

)
+ log

(
σ̃ 2
f (ti )

2

)
− C,

(18)

where σ̃ 2
f (ti ) is the diagonal entry of Σ̃ f (t, t ′) in Eq. (7) at ti ,

C is the Euler-Mascheroni constant 0.57721566 and G̃(z) is
a special case of the partial derivative of the confluent hyper-
geometric function 1F1(a, b, z) (Lloyd et al. 2015)

G̃(z) = 1F1
(1,0,0)(0, 0.5, z). (19)

It is worth noting that G̃(z) does not need to be computed for
inference. Actually we only need to know G̃(0) = 0 because
m∗

f = 0 as we have shown in the section of inference speed
up.

C Matrix derivative of ELBO

Given m f = 0, ELBOμ can be written as

ELBOμ

= −
(
θ
f
0 T − Tr(K−1

z f z f � f ) + Tr(K−1
z f z f S fK−1

z f z f � f )
)

+
N∑

i=1

pii
(
−G̃(0) + log(σ̃ 2

f (ti )) − log 2 − C
)

−1

2

(
Tr(K−1

z f z f S f ) + log |Kz f z f | − log |S f | − M f

)
.

(20)

If S f is symmetric, ∂ELBOμ/∂S f can be written as

∂ELBOμ

∂S f
= −(2K−1

z f z f Ψ f K
−1
z f z f − K−1

z f z f Ψ f K
−1
z f z f ◦ I)

+
N∑

i=1

pii

(
2K−1

z f z f kz f ti kti z f K
−1
z f z f

− K−1
z f z f kz f ti kti z f K

−1
z f z f ◦ I

)
/σ̃ 2

f (ti )

− 1

2

(
2K−1

z f z f − K−1
z f z f ◦ I − (2S−1

f − S−1
f ◦ I)

)
,

(21)

where I denotes the identity matrix, ◦ denotes the Hadamard
(elementwise) product and σ̃ 2

f (ti ) = θ
f
0 −kti z f K

−1
z f z f kz f ti +

kti z f K
−1
z f z f S fK−1

z f z f kz f ti is the diagonal entry of Σ̃ f (t, t ′) in
Eq. (7).

If S f is diagonal, ∂ELBOμ/∂S f can be further simplified
as

∂ELBOμ

∂S f
= −K−1

z f z f Ψ fK−1
z f z f ◦ I

+
N∑

i=1

pii
K−1

z f z f kz f tikti z f K
−1
z f z f ◦ I

σ̃ 2
f (ti )

− 1

2

(
K−1

z f z f ◦ I − S−1
f

)
.

(22)

Similarly given mg = 0, ELBOφ can be written as

ELBOφ

= −
N∑

i=1

(
θ
g
0 Tφ − Tr(K−1

zg zg�g) + Tr(K−1
zg zgSgK

−1
zg zg�g)

)

+
N∑

i=2

i−1∑

j=1

pi j
(
−G̃(0) + log(σ̃ 2

g (τi j )) − log 2 − C
)

−1

2

(
Tr(K−1

zg zgSg) + log |Kzg zg | − log |Sg| − Mg

)
.

(23)

If Sg is symmetric, ∂ELBOφ/∂Sg can be written as

∂ELBOφ

∂Sg
= −

N∑

i=1

(2K−1
zgzgΨgK−1

zgzg − K−1
zgzgΨgK−1

zgzg ◦ I)

+
N∑

i=2

i−1∑

j=1

pi j

(
2K−1

zgzgkzgτi j kτi j zgK
−1
zgzg

− K−1
zgzgkzgτi j kτi j zgK

−1
zgzg ◦ I

)
/σ̃ 2

g (τi j )

− 1

2

(
2K−1

zgzg − K−1
zgzg ◦ I − (2S−1

g − S−1
g ◦ I)

)
,

(24)

where σ̃ 2
g (τi j ) = θ

g
0 −kτi j zgK

−1
zgzgkzgτi j +kτi j zgK

−1
zgzgSgK

−1
zgzg

kzgτi j is the diagonal entry of Σ̃g(τ, τ
′).
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If Sg is diagonal, ∂ELBOφ/∂Sg can be further simplified
as

∂ELBOφ

∂Sg
= −

N∑

i=1

K−1
zgzgΨgK−1

zgzg ◦ I

+
N∑

i=2

i−1∑

j=1

pi j
K−1

zgzgkzgτi jkτi j zgK
−1
zgzg ◦ I

σ̃ 2
g (τi j )

− 1

2

(
K−1

zgzg ◦ I − S−1
g

)
.

(25)
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