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Abstract

Meta-learning has demonstrated promising results in few-shot classification (FSC)
by learning to solve new problems using prior knowledge. Bayesian methods are
effective at characterizing uncertainty in FSC, which is crucial in high-risk fields.
In this context, the logistic-softmax likelihood is often employed as an alternative
to the softmax likelihood in multi-class Gaussian process classification due to
its conditional conjugacy property. However, the theoretical property of logistic-
softmax is not clear and previous research indicated that the inherent uncertainty
of logistic-softmax leads to suboptimal performance. To mitigate these issues,
we revisit and redesign the logistic-softmax likelihood, which enables control of
the a priori confidence level through a temperature parameter. Furthermore, we
theoretically and empirically show that softmax can be viewed as a special case
of logistic-softmax and logistic-softmax induces a larger family of data distri-
bution than softmax. Utilizing modified logistic-softmax, we integrate the data
augmentation technique into the deep kernel based Gaussian process meta-learning
framework, and derive an analytical mean-field approximation for task-specific
updates. Our approach yields well-calibrated uncertainty estimates and achieves
comparable or superior results on standard benchmark datasets. Code is publicly
available at https://github.com/keanson/revisit-logistic-softmax.

1 Introduction

Meta-learning refers to the ability to quickly learn a new task given a set of training tasks that share
a common structure [13; 15; 30]. This concept is critical for achieving human-like performance
computationally with little data, and recent algorithms have shown success in few-shot classification
and regression problems [15; 18]. When dealing with limited data, it is essential to analyze robust
meta-learning methods that properly deal with uncertainty which is inevitable in the context [1]. Some
existing works have suggested that the Bayesian inference mechanism provides a principled way to
address this issue, moving towards robust meta-learning with uncertainty quantification [7; 27; 38].

The Bayesian framework combines a prior distribution and a likelihood function that models the data
distribution. By performing posterior inference on parameters, it provides a natural framework for
capturing inherent model uncertainty [8; 23]. Gaussian process (GP) is a Bayesian nonparametric
method that places a prior distribution on functions rather than parameters, ensuring better expressive-
ness [3]. The GP prior is defined by a covariance function which can be parameterized by deep neural
networks, commonly referred to as a deep kernel [35]. GP with a deep kernel has demonstrated
state-of-the-art performance in few-shot regression problems [20], where posterior inference admits a
closed-form solution due to the conjugacy between the Gaussian likelihood and the GP prior.
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However, there are several challenges in GP-based meta-learning with deep kernels for classification
tasks. To begin with, unlike the regression scenario, the widely-used softmax likelihood does not
lead to conjugacy for GPs, making posterior inference intractable. To overcome this issue, several
approximate inference methods have been proposed, such as label regression with Gaussian likelihood
[20], One-vs-Each (OVE) approximation of softmax [27], and the logistic-softmax likelihood [9].
The logistic-softmax likelihood replaces the exponential function in the softmax likelihood with a
logistic function, ensuring conditional conjugacy after data augmentation [9]. However, previous
research suggests that the logistic-softmax function tends to exhibit inherent lack of confidence,
leading to suboptimal performance in few-shot classification tasks [27]. Additionally, most GP-based
meta-learning models employ Gibbs sampling for posterior inference, which can be computationally
demanding for achieving convergence [26]. Furthermore, the coordination of task-level posterior
inference and meta-level optimization for deep kernel methods remains an open question.

In this paper, we bridge these gaps by redesigning the logistic-softmax likelihood and deriving a mean-
field approximation for posterior inference. In contrastive learning, adding a temperature parameter
to rescale the logits in softmax is a prevalent approach [4; 12; 33]. Motivated by this concept, we
introduce the temperature parameter to the logistic-softmax likelihood to control its inherent prior
confidence. Moreover, we discover that softmax can be viewed as a special case of logistic-softmax
and logistic-softmax induces a larger family of data distribution than softmax. To the best of our
knowledge, this theoretical property has not been covered in the literature. Furthermore, we apply the
modified logistic-softmax likelihood to GP based meta-learning for few-shot classification. Since
the logistic-softmax likelihood enables a conditional conjugate GP model, we naturally derive an
analytical mean-field approximation for task-specific updates. Compared to the existing literature [27],
this variational inference method is more efficient than Gibbs sampling. We empirically show that
our mean-field approximation achieves comparable results to the Gibbs sampling in practice. We also
contribute to the coordination problem of bi-level optimization in Bayesian meta-learning methods.

Specifically, our contributions are as follows: (1) we introduce the logistic-softmax with temperature
and prove its unique limiting behavior, which may have broad applicability across diverse machine
learning domains; (2) we theoretically and empirically show that softmax can be viewed as a particular
case of logistic-softmax and logistic-softmax induces a larger family of data distribution than softmax;
(3) we derive an analytical mean-field approximation for task-level posterior inference with redesigned
logistic-softmax through data augmentation; (4) we demonstrate the effectiveness of the redesigned
logistic-softmax through few-shot classification accuracy and uncertainty calibration on several
benchmark datasets; (5) we contribute to the coordination of task-level inference and meta-level
optimization that appears in Bayesian meta-learning, which may provide insights for future research.

2 Preliminaries

Meta-learning involves learning from a set of tasks in order to acquire knowledge and generalize
to new tasks [5; 20]. In this work, the t-th task comprises a dataset Dt consisting of both support
and query data, denoted as St and Qt respectively. The support data St consists of a limited number
of samples (N -shot), represented as pairs of input-output (xn, yn), while the query set Qt typically
includes a larger number of samples. During training, models are exposed to various tasks sampled
from the dataset D to learn and extract valuable information across different contexts. Subsequently,
when presented with an unseen task t∗, the model aims to leverage the acquired knowledge from both
training data and the support set St∗ to make accurate predictions on the query set Qt∗ .
Gaussian Process Classification is a probabilistic framework used for solving classification prob-
lems. At its core, a GP is a probability distribution over functions, where the values of the function
f(x) evaluated at an arbitrary set of inputs have a joint Gaussian distribution with a mean vector and a
covariance matrix determined by a kernel function. In the context of a C-class classification problem,
separate GP latent functions {f c}Cc=1 are employed to model the logits for each class. These latent
functions represent the underlying mapping from the input space to the logit of each class, capturing
the uncertainty associated with the classification decision. By modeling the class logits with GPs, it
enables principled probabilistic inference and prediction.

Deep Kernel is proposed by Wilson et al. [35] which combines kernel methods and neural networks,
harnessing the expressive power from both sides. This deep kernel extends traditional covariance
kernels by integrating a deep architecture into the base kernel formulation. The deep kernel is defined
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as k(x,x′ | θ,w) = k′(gw(x), gw(x′) | θ), where k′ represents the base kernel with parameters θ.
To enhance flexibility, the inputs x and x′ are transformed by a deep neural network g with weights
w. The deep kernel parameters consist of θ and w. A notable advantage of deep kernels is their
capability to learn metrics through data-driven optimization of input space transformation, in contrast
to traditional kernels that often rely on Euclidean distance-based metrics.

3 Logistic-softmax with Temperature

Logistic-softmax
One-hot

Uniform

Softmax Pattern 1

Pattern 2

Figure 1: Diagram representing the fea-
tures and relationship of logistic-softmax
and softmax.

In this section, we introduce a novel logistic-softmax func-
tion that incorporates a temperature parameter. We first
emphasize two unique features of this function as the
temperature approaches zero. We then demonstrate that
logistic-softmax surpasses softmax as a versatile categor-
ical likelihood theoretically and empirically. Specifically,
we show that softmax can be viewed as a special case
of logistic-softmax and logistic-softmax induces a larger
family of data distributions than softmax. Fig. 1 briefly
previews the relationship between the two likelihoods.

3.1 Definition of Logistic-softmax with Temperature

We define the logistic-softmax function with temperature
as:

p(y = k | fn) =
σ(fkn/τ)∑C
c=1 σ(f cn/τ)

, (3.1)

where we assume C classes, f cn = f c(xn), fn = [f1n, . . . , f
C
n ]>, k ∈ [C] := {1, . . . , C}, τ is the

temperature parameter and σ(·) is the logistic function as opposed to the exponential in the traditional
softmax. While there are other possible choices for incorporating the idea of temperature, we find this
particular form is the most straightforward one while preserving the desired conditional conjugate
property of logistic-softmax as shown in later sections.

Although reminiscent of the softmax likelihood with temperature, the logistic-softmax likelihood
displays distinct limiting behavior, illustrated by the following theorem.
Theorem 3.1. Denote the logistic-softmax function with temperature as LS(fn, τ). Define I := {i :
f in > 0} ⊂ [C], we have

lim
τ→0+

LS(fn, τ) =


ec∗ , if max

c∈[C]
f cn < 0 and c∗ = argmax

c∈[C]

f cn

1

|I|
∑
c∈I

ec, if max
c∈[C]

f cn > 0

where ec ∈ RC is the one-hot vector with a 1 in its c-th coordinate.

The proof is provided in Appendix I. On the one hand, the logistic-softmax likelihood converges to
a one-hot vector when f cn < 0 for all c ∈ [C]. On the other hand, the likelihood transforms into a
uniform distribution over the classes corresponding to the indices of the positive elements if multiple
elements of fn are greater than 0.

We interpret the theoretical result from two perspectives. First, the original logistic-softmax likelihood
has been criticized for its lack of confidence [27]. However, with the introduction of temperature, the
modified logistic-softmax likelihood can become excessively confident as the temperature approaches
zero. This implies that we can effectively control the confidence of the logistic-softmax likelihood
by adjusting the temperature, thus resolving existing issues. Second, when multiple components
of the logits are positive, this likelihood exhibits remarkable fairness to all positive classes. This
characteristic is profound and distinct since it enables adaptation to multi-label classification scenarios,
where assigning an equal probability to each correct class is essential. Notably, to our knowledge,
no existing likelihood can identify multiple correct classes, which limits the tools available for
multi-label classification. Within this domain, the prevalent approach is to treat each class as a binary
classification problem separately. Our discovery paves the way for a new paradigm in this domain, as
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the logistic-softmax function allows for the identification of several positive labels simultaneously.
However, in this work, we primarily concentrate on the application of logistic-softmax in Bayesian
meta-learning and postpone the investigation of multi-label classification to future research.

3.2 Comparison of Logistic-softmax and Softmax with Temperature

We present several results demonstrating that logistic-softmax surpasses softmax as a versatile
categorical likelihood function theoretically and empirically. We begin by giving a theorem that
shows the logistic-softmax function converges to the softmax function pointwise.

Theorem 3.2. For all fn ∈ RC , τ ∈ R \ {0} and C0 ∈ R, we have

lim
C′→+∞

LS(fn − C ′, τ) = S(fn, τ) = S(fn − C0, τ),

where S(fn, τ) denotes the softmax function with temperature.

The proof is provided in Appendix II. This theorem shows that softmax is a translational invariant
function that can be approximated by logistic-softmax with a sufficient negative shift of logits. We
also note that logistic-softmax is not translational invariant. Empirically, we find that C ′ = 5 provides
an accurate approximation if fn is near zero. Now we present a stronger result indicating that
logistic-softmax is more versatile than softmax with regards to modeling the data distribution.

Theorem 3.3. Assume the logits f c ∼ GP(a, kc), where a is the mean function and kc is the
kernel function for each class c ∈ [C]. Denote y = [y1, . . . , yN ]> as the random label vector of
N given points. Suppose a ∈ A and kc ∈ K , where A and K are two function classes. Define
F (` | A ,K ) as the family of the marginal distribution p(y|X, a, kc) induced by a ∈ A and
kc ∈ K on given points X ∈ RN×p with a likelihood function `. Under mild condition on A , we
have

F (S | A ,K ) = F (S | K ).

Furthermore, we have
F (S | A ,K ) ⊂ F (LS | K ).

The proof is provided in Appendix III. We elaborate on this theoretical result below. The first equation
indicates that data distribution induced by softmax is translational invariant with regards to a, while
the one by logistic-softmax is not. Recall that Theorem 3.2 implies softmax is translational invariance
w.r.t. its input variable. Intuitively, as the location parameter a is integrated due to translational
invariance, the family of the marginal distribution of y corresponding to softmax is only decided by
the kernel function k, while the family for logistic-softmax has an additional parameter a. With this
intuition, it should be rather straightforward to understand our second result. Informally, the second
result states that logistic-softmax has a larger family than softmax. In other words, logistic-softmax
possesses a stronger capability in modeling the data distribution for each class.

Next, we delve deeper into the relationship between logistic-softmax and softmax. For comparison,
we present a toy classification task with three classes (C = 3) and one sample belonging to the
first class (y = 1). We place a standard normal prior on f1 and f2 and clamp f3 at −100 for ease
of visualization. We plot the likelihoods in Fig. 2 where we observe a distinct pattern between
softmax and logistic-softmax. Although both likelihoods become more confident (likelihood output
changes at a faster rate) as the temperature parameter decreases, logistic-softmax exhibits unique
probability patterns when both f1 and f2 are greater than 0, while softmax gives the same sets of
borderline parallel to f1 − f2 = 0 regardless of location. We present the zoom-in plots to further
explain the difference in Fig. 2. These plots demonstrate that when both f1 and f2 are a bit less than
0, logistic-softmax accurately approximates softmax in every temperature. Indeed, the pattern of
softmax in the whole plane is the same as the pattern that appeared in quadrant 3 of logistic-softmax.
This observation supports the idea behind Theorem 3.2 and Theorem 3.3, which shows that logistic-
softmax is capable of modeling any data distribution that can be modeled by softmax, as long as we
adjust the logits to the negative domain or put a sufficiently small negative mean on f . Furthermore,
as Fig. 2 shows, the softmax likelihood is unable to model the data distribution of logistic-softmax
with positive logits. Therefore, we conclude that logistic-softmax is more powerful than softmax for
its expressiveness in modeling categorical distribution.
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Figure 2: Plot of p(y = 1|f) where f3 clamped to −100. We provide separate zoom-in plots
of softmax and logistic-softmax in the 2nd row. In the upper-right area (where all f1 and f2 are
greater than 0), the logistic-softmax function exhibits unique probability patterns that softmax cannot
model. In the bottom-left area (where all f1 and f2 are smaller than 0), logistic-softmax accurately
approximates softmax for every temperature and every location all at once.

3.3 Further Discussions of Potential Applications

As the logistic-softmax function possesses more expressiveness than the softmax function, we include
a short discussion of its potential applications in various domains. To begin with, it can be applied to
Gaussian process classification tasks, including class-imbalanced scenarios [37], active learning [40],
and time-series data analysis [6]. In this case, logistic-softmax brings desired conditional conjugacy
to make inference tractable and provides additional flexibility in data modeling than softmax as
indicated in our paper. Moreover, the logistic-softmax function can be a great choice in modern
Bayesian methods, such as Bayesian neural networks and neural network Gaussian processes although
further adaptation is needed. Furthermore, logistic-softmax might be capable of replacing softmax
beyond the Bayesian domain since we prove its flexibility over the softmax function. For example, as
the logistic-softmax function captures positive signals for multiple classes, it may have prospective
advantages in scenarios like multi-label classification [14] and multi-label contrastive learning [39],
ushering in new paradigms thanks to its unique properties.

4 Logistic-softmax with Temperature in Bayesian Meta-learning

Logistic-softmax was initially proposed to address the conjugation issue that arises in multi-class
Gaussian process classification. As the Bayesian framework is advantageous in uncertainty calibration,
some researchers focus on adapting the multi-class Gaussian process to few-shot classification tasks,
where Bayesian meta-learning is one of the prevalent paradigms. In specific, Snell & Zemel [27]
attempts to apply original logistic-softmax to Bayesian meta-learning but fails to provide efficient
inference and optimal result. To follow this research line and validate the advantages of logistic-
softmax with temperature, we utilize the logistic-softmax likelihood in the GP-based meta-learning
framework. Additionally, we use the data augmentation technique to derive a fully analytical mean-
field inference method for this model.

4.1 Framework of Bayesian Meta-learning

We review the Bayesian meta-learning framework used in the research line of MAML [7], DKT [20],
and OVE [27]. To begin with, Bayesian meta-learning commonly utilizes a hierarchical structure
that includes an inner loop and an outer loop. Conventionally, task-specific parameters are updated
in the inner loop and task-common parameters are updated in the outer loop [7]. For efficiency,
DKT proposed to replace the inner loop with a marginal likelihood computation that integrates out
task-specific GP function for each task [22]. Then, the task-common hyperparameter Θ of the deep
kernel can be learned by maximizing the marginal likelihood across all tasks in the outer loop. More
specifically, denote the input support and query data of task t as Dx

t , the target data as Dy
t . Dx and

5



Dy are the collections of these datasets over all tasks. The marginal likelihood takes the form

p(Dy | Dx,Θ) =
∏
t

∫
p(Dy

t | Dx
t ,φt)p(φt | Θ)dφt, (4.1)

where φt is the task-specific parameters of task t. To obtain an analytic integral of Eq. (4.1), DKT
used a GP prior for p(φt | Θ). The integral can be computed analytically in regression cases since the
model likelihood is Gaussian as opposed to classification cases where the conjugacy is broken since
the likelihood is Bernoulli or categorical. However, we can use the logistic-softmax likelihood to
obtain a GP model that is conditional conjugate after data augmentation. Thus, an efficient inference
method is needed for the augmented model. We describe our task-level inference in next section.

4.2 Task-level Bayesian Inference

In this subsection, we introduce how an efficient task-level Bayesian inference method is developed.
For a specific task, we denote the (support and query) input dataset as X = [x1, . . . ,xN ]> with label
dataset y = [y1, . . . , yN ]> where yn ∈ [C], N and C are the number of observations and classes
respectively. The multi-class GP classification model includes latent GP functions for each class
f = [f1, . . . , fC ]> where f c ∼ GP(ac, kc), ac is mean function and kc is kernel for c-th class.

We utilize the logistic-softmax function with temperature in Eq. (3.1) to model the likelihood for the
multi-class GP classification. Inspired by Galy-Fajou et al. [9], three sets of auxiliary latent variables
are augmented to expand the logistic-softmax likelihood to obtain a conditional conjugate model
for each task, including Gamma variables λ, Poisson variables M, and Pólya-Gamma variables Ω.
Given the GP priors on f c, we obtain the augmented joint density (proof provided in Appendix IV):

p(Y,λ,M,Ω,F) =

N∏
n=1

C∏
c=1

2−(y
c
n+m

c
n) exp

(
ycn −mc

n

2

f cn
τ
− ωcn

2

(f cn
τ

)2)
PG(ωcn | mc

n + ycn, 0)

· λ
mc

n
n

mc
n!

exp(−λn) ·
C∏
c=1

N (f c | ac,Kc), (4.2)

where f c = [f c1 , . . . , f
c
N ]> is the c-th column of F, λn is the augmented Gamma variable, mc

n is the
augmented Poisson variable, ωcn is the augmented Pólya-Gamma variable, ac is the mean and Kc is
the kernel matrix for c-th class with N samples. The original model has been now transformed into a
conditional conjugate one, which possesses excellent mathematical properties.

Mean-field Approximation Based on Eq. (4.2), we can obtain the closed-form conditional densi-
ties for all variables, which constitutes a Gibbs sampler if we iteratively draw a sample from each
conditional distribution. However, the Gibbs sampler is not efficient because the sampling operation
is time-consuming. In order to improve efficiency, we derive a mean-field variational inference that
provides an approximate posterior but with better efficiency.

In the mean-field algorithm, we need to approximate the true posterior p(λ,M,Ω,F | Y) by a
variational distribution which is assumed to factorize over some partition of latent variables. Here,
we assume the variational distribution q(λ,M,Ω,F) = q1(M,Ω)q2(λ,F). Following the standard
derivation provided in Appendix V, we obtain the optimal density for each factor:

q1(Ω|M) =

N,C∏
n,c=1

PG(ωcn | mc
n + ycn, f̃

c
n), (4.3a)

q1(M) =

N,C∏
n,c=1

Po(mc
n | γcn), (4.3b)

q2(λ) =

N∏
n=1

Ga(λn | αn, C), (4.3c)

q2(F) =

C∏
c=1

N (f c | µ̃c, Σ̃c), (4.3d)

where
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f̃ cn =
1

τ

√
E[f c2n ] =

1

τ

√
µ̃c2n + σ̃c2nn, (4.4a)

γcn =
exp(ψ(αn)− µ̃cn/2τ)

2C cosh(f̃ cn/2)
, (4.4b)

αn =

C∑
c=1

γcn + 1, (4.4c)

Σ̃c = (diag(ω̄cn/τ
2) + Kc−1

)−1, (4.4d)

µ̃c =
1

2τ
Σ̃c(yc − γc) + Σ̃cKc−1

ac, (4.4e)

ω̄cn = E[ωcn] =
γcn + ycn

2f̃ cn
tanh

f̃ cn
2
. (4.4f)

where ψ(·) is the digamma function. Update the posterior of Ω,M,λ and F iteratively by Eq. (4.3),
we obtain an efficient mean-field algorithm to provide the approximate posterior for each task.

4.3 Meta-level Optimization

We learn a set of hyperparameters Θ of deep kernels in the outer loop that maximizes the marginal
likelihood across all tasks, which is also called the empirical Bayes [17]:

T∑
t=1

log p(Yt | Θ) =

T∑
t=1

log

∫
p(Yt,λt,Mt,Ωt,Ft | Θ)dλtdMtdΩtdFt, (4.5)

where the subscript t indicates the t-th task. Unfortunately, the integral in Eq. (4.5) is intractable, so
we utilize an approximate approach: given the variational parameters of each task, we try to maximize
the evidence lower bound (ELBO) L as a function of Θ [16]. Thanks to the data augmentation, we
have an analytical expression of the ELBO which is provided in Appendix VI, and the gradient∇ΘL
can be computed by the automatic differentiation [2]. In addition, Snell & Zemel [27] has found that
the predictive likelihood (PL) can also serve as a loss of Θ. We follow their derivation and use the
approximate gradient estimator:

∇θLPL ≈
1

M

M∑
m=1

∇θ log p(y∗ = k | x∗,X,Y, Θ̂),

where M denotes the number of samples drawn from Eq. (4.6b).

Alternating between the optimization steps w.r.t. the variational parameters of each task in the inner
loop and the hyperparameters of deep kernels in the outer loop, we obtain an efficient Bayesian
meta-learning method for classification. However, the coordination of the gradient flow between the
inner loop and the outer loop remains an open question. Previous research detaches the task-level
variables in the inner loop and updates the hyperparameters of the deep kernel using gradients
produced by the outer loop [27]. Nevertheless, we have discovered that the task-level variables in the
inner loop should not be detached when using mean-field approximation.

4.4 Prediction

Given a test task with support dataset containing the input X = {xl}Ll=1 and label Y = {yl}Ll=1
from which the model can learn about the new classes, and an unlabeled data point x∗ in the query
dataset, the predictive probability of test label y∗ = k is:

p(y∗ = k | x∗,X,Y, Θ̂) =

∫
p(y∗ = k | f∗)

C∏
c=1

q(f c∗ | X,Y, Θ̂)df∗, (4.6a)

q(f c∗ | X,Y, Θ̂) =

∫
p(f c∗ | f c)q(f c | X,Y, Θ̂)df c = N (f c∗ | µc∗, σ2

∗
c
), (4.6b)

where k ∈ {1, . . . , C}, Θ̂ is the learned kernel hyperparameter in the training procedure, p(y∗ = k |
f∗) is the logistic-softmax likelihood, f∗ = [f1(x∗), . . . , f

C(x∗)]
>, q(f c | X,Y, Θ̂) is Eq. (4.3d),

µc∗ = kc∗lK
c−1

ll µ̃c and σ2
∗
c

= kc∗∗ − kc∗lK
c−1

ll kcl∗ + kc∗lK
c−1

ll Σ̃cKc−1

ll kcl∗. The integral in Eq. (4.6a)
is intractable, so we resort to Monte Carlo to compute it and classify the test point by the highest pre-
dictive probability. The complete training and test procedure is described in Alg. 1 of Appendix VII.
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5 Experiments

In this section, we present the results for few-shot classification tasks including accuracy and
uncertainty quantification. We consider two challenging standard benchmark datasets: the Caltech-
UCSD Birds [32] and mini-ImageNet [24].

5.1 Few-shot Classification and Domain Transfer

In this subsection, we describe the experimental setup and report the results of our few-shot classi-
fication tasks. While we notice that there are various settings for few-shot classification (e.g., the
distribution calibration technique in Yang et al. [36]), we adopt the vanilla setting in Bayesian meta-
learning to better compare the likelihoods. Following the procedure of prior work [20], we employ a
standard Conv4 architecture [31] as the backbone and assess our models under six different settings,
including 1-shot and 5-shot scenarios for both in-domain and cross-domain tasks. We benchmark
our models against various baselines and state-of-the-art models, including Feature Transfer [5],
Baseline++ [5], MatchingNet [31], ProtoNet [28], RelationNet [29], MAML [7], DKT [20], Bayesian
MAML [38], ABML [23], LS [9], and OVE [27]. As for LS, we utilized the Gibbs sampling version
implemented by Snell & Zemel [27], which is more computationally demanding than our mean-field
method. We note that DKT, LS, and OVE are similar to our proposed method as they are all GP-based
models but use different likelihood functions and inference methods. To ensure a fair comparison, we
also apply the cosine kernel as in Patacchiola et al. [20] and Snell & Zemel [27].

We train and evaluate our models (denoted as CDKT) with the ELBO loss (denoted as ML) using the
default number of epochs from Patacchiola et al. [20], and with the predictive likelihood loss (denoted
as PL) using 800 epochs. However, we find that the ML (τ < 1) domain-transfer experiment requires
800 epochs to avoid underfitting. We set the temperature parameter to τ = 0.5 for the 5-shot PL
experiment of mini-ImageNet and domain transfer, and τ = 0.2 for all other experiments. Drawing
inspiration from Section 3, we observe that placing a negative mean prior improves our method by
0.5% to 1% across all experiments. To ensure numerical stability, we train our models with a zero
mean prior and use a constant negative mean of −5 at test time for all ML (τ < 1) experiments. We
also use this technique for the PL (τ < 1) experiment of the domain-transfer task. We also note
that the training of PL loss is generally less efficient than the ML loss, as it requires Monte Carlo
sampling. Our mean field approximation converges at an extremely fast rate and we only need 2
steps for task-level updates. More experimental details are provided in Appendix VIII.

We report the average accuracy and standard deviation of our models evaluated on 5 batches of 600
episodes with different random seeds in Table 1. Our model achieves the highest accuracy in both 1-
shot (65.21%) and 5-shot (79.10%) experiments on the CUB dataset and achieves comparable results
on the mini-ImageNet dataset. As for the domain-transfer task, we also achieve the highest result
for the 1-shot (40.43%) scenario and a near-optimal result for the 5-shot (56.18%) scenario. Overall,
while our mean-field approximation method works well for the ELBO loss (ML), the predictive
likelihood loss (PL) generally does not match the performance demonstrated by the Gibbs sampling
version of LS proposed by Snell & Zemel [27]. However, we find the PL loss effective for the
domain-transfer scenario, indicating its potential at dealing with this type of task. Moreover, we
observe a significant improvement (3% - 5%) in accuracy by adding a small temperature scaling
(τ = 0.2 or 0.5) to the default logistic-softmax function (τ = 1) in all scenarios. This finding suggests
that our approach to controlling the a priori confidence of logistic-softmax is highly effective.

5.2 Uncertainty Quantification

Uncertainty quantification is an important aspect of few-shot learning because classifiers trained on
limited data may have high variance and uncertainty in their predictions. This uncertainty can arise
from a variety of sources, such as the small amount of training data, the complexity of the model, and
the variability of the input data. A robust meta-learning method should be able to properly deal with
such uncertainty, especially in high-risk areas including medical diagnosis, judicial adjudication, and
autonomous driving.

We use 2 widely-applied metrics for uncertainty quantification, namely expected calibration error
(ECE) [11] and maximum calibration error (MCE) [19]. ECE measures the average difference
between confidence (probability outputs) and accuracy within each bin. MCE is similar to ECE but it
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Table 1: Average 1-shot and 5-shot accuracy and standard deviation on 5-way few-shot classification.
Baseline results are from Patacchiola et al. [20] and Snell & Zemel [27]. Results are evaluated over 5
batches of 600 episodes with different random seeds. We highlight the best results in bold.

CUB mini-ImageNet mini-ImageNet → CUB
Method 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
Feature Transfer 46.19 ± 0.64 68.40 ± 0.79 39.51 ± 0.23 60.51 ± 0.55 32.77 ± 0.35 50.34 ± 0.27
Baseline++ 61.75 ± 0.95 78.51 ± 0.59 47.15 ± 0.49 66.18 ± 0.18 39.19 ± 0.12 57.31 ± 0.11
MatchingNet 60.19 ± 1.02 75.11 ± 0.35 48.25 ± 0.65 62.71 ± 0.44 36.98 ± 0.06 50.72 ± 0.36
ProtoNet 52.52 ± 1.90 75.93 ± 0.46 44.19 ± 1.30 64.07 ± 0.65 33.27 ± 1.09 52.16 ± 0.17
RelationNet 62.52 ± 0.34 78.22 ± 0.07 48.76 ± 0.17 64.20 ± 0.28 37.13 ± 0.20 51.76 ± 1.48
MAML 56.11 ± 0.69 74.84 ± 0.62 45.39 ± 0.49 61.58 ± 0.53 34.01 ± 1.25 48.83 ± 0.62
DKT + Cosine 63.37 ± 0.19 77.73 ± 0.26 48.64 ± 0.45 62.85 ± 0.37 40.22 ± 0.54 55.65 ± 0.05
Bayesian MAML 55.93 ± 0.71 72.87 ± 0.26 44.46 ± 0.30 62.60 ± 0.25 33.52 ± 0.36 51.35 ± 0.16
Bayesian MAML (Chaser) 53.93 ± 0.72 71.16 ± 0.32 43.74 ± 0.46 59.23 ± 0.34 36.22 ± 0.50 51.53 ± 0.43
ABML 49.57 ± 0.42 68.94 ± 0.16 37.65 ± 0.22 56.08 ± 0.29 29.35 ± 0.26 45.74 ± 0.33
LS (Gibbs) + Cosine (ML) 60.23 ± 0.54 74.58 ± 0.25 46.75 ± 0.20 59.93 ± 0.31 36.41 ± 0.18 50.33 ± 0.13
LS (Gibbs) + Cosine (PL) 60.07 ± 0.29 78.14 ± 0.07 47.05 ± 0.20 66.01 ± 0.25 36.73 ± 0.26 56.70 ± 0.31
OVE PG GP + Cosine (ML) 63.98 ± 0.43 77.44 ± 0.18 50.02 ± 0.35 64.58 ± 0.31 39.66 ± 0.18 55.71 ± 0.31
OVE PG GP + Cosine (PL) 60.11 ± 0.26 79.07 ± 0.05 48.00 ± 0.24 67.14 ± 0.23 37.49 ± 0.11 57.23 ± 0.31

CDKT + Cosine (ML) (τ < 1) 65.21 ± 0.45 79.10 ± 0.33 47.54 ± 0.21 63.79 ± 0.15 40.43 ± 0.43 55.72 ± 0.45
CDKT + Cosine (ML) (τ = 1) 60.85 ± 0.38 75.98 ± 0.33 43.50 ± 0.17 59.69 ± 0.20 35.57 ± 0.30 52.42 ± 0.50
CDKT + Cosine (PL) (τ < 1) 59.49 ± 0.35 76.95 ± 0.28 44.97 ± 0.25 60.87 ± 0.24 39.18 ± 0.34 56.18 ± 0.28
CDKT + Cosine (PL) (τ = 1) 52.91 ± 0.29 73.34 ± 0.40 40.29 ± 0.14 60.23 ± 0.16 37.62 ± 0.32 54.32 ± 0.19

Table 2: Expected calibration error (ECE) and maximum calibration error (MCE) for 5-shot 5-way
tasks on CUB, mini-ImageNet, and domain-transfer. Baseline results are from Snell & Zemel [27].
All metrics are computed on 3,000 random tasks from the test set.

CUB mini-ImageNet mini-ImageNet→CUB
Method ECE MCE ECE MCE ECE MCE
Feature Transfer 0.187 0.250 0.368 0.641 0.275 0.646
Baseline++ 0.421 0.502 0.395 0.598 0.315 0.537
MatchingNet 0.023 0.031 0.019 0.043 0.030 0.079
ProtoNet 0.034 0.059 0.035 0.050 0.009 0.025
RelationNet 0.438 0.593 0.330 0.596 0.234 0.554
DKT + Cosine 0.187 0.250 0.287 0.446 0.236 0.426
Bayesian MAML 0.018 0.047 0.027 0.049 0.048 0.077
Bayesian MAML (Chaser) 0.047 0.104 0.010 0.071 0.066 0.260
LS (Gibbs) + Cosine (ML) 0.371 0.478 0.277 0.490 0.220 0.513
LS (Gibbs) + Cosine (PL) 0.024 0.038 0.026 0.041 0.022 0.042
OVE PG GP + Cosine (ML) 0.026 0.043 0.026 0.039 0.049 0.066
OVE PG GP + Cosine (PL) 0.005 0.023 0.008 0.016 0.020 0.032

CDKT + Cosine (ML) 0.005 0.036 0.009 0.015 0.007 0.020
CDKT + Cosine (PL) 0.018 0.223 0.025 0.140 0.010 0.029

measures the maximum difference. Following the protocol of Patacchiola et al. [20] for evaluation,
we first tune the temperature parameter on the validation set for alignment and then compute the
ECE and MCE on the test set. The results of 5-shot experiments are summarized in Table 2. We
observe that our introduction of temperature significantly improves the calibration of logistic-softmax
compared to the one implemented by Snell & Zemel [27]. Specifically, we obtain the lowest ECE on
CUB (0.005) and domain transfer (0.007) and the lowest MCE on mini-ImageNet (0.015) and domain
transfer (0.020). Our model performs marginally worse than state-of-the-art in MCE on CUB and
ECE on mini-ImageNet. Overall, this result indicates that our model is highly reliable on uncertainty
calibration, demonstrating promising robustness in few-shot scenarios.

Figure 3 shows the reliability diagrams of our models. The confidence barplot should match the
diagonal line for a robust uncertainty quantification model. We observe that the models trained with
the ELBO loss (ML) generally perform better than those trained with the predictive likelihood (PL).
Specifically, ML models closely match the diagonal line while PL models tend to underestimate the
accuracy of low-confidence outputs. In conclusion, our findings indicate that ML models are better
at handling uncertainty in the context of mean-field approximation inference. This is an interesting
result as it contrasts the findings in Snell & Zemel [27], where PL models with Gibbs sampling
generally perform better. Nonetheless, we leave the analysis of this phenomenon to future work.
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(a) CUB (ML) (b) Mini (ML) (c) DT (ML) (d) CUB (PL) (e) Mini (PL) (f) DT (PL)

Figure 3: Reliability diagrams on 5-shot classification with expected calibration error (ECE) and
maximum calibration error (MCE) metrics. Mini denotes the mini-ImageNet dataset, and DT denotes
the domain transfer task of CUB→ mini-ImageNet. Results are computed on 3,000 test tasks.

6 Related Work

GP classification has been extensively studied, and several approaches have been proposed to address
its challenges, including label regression and Laplace approximation [25; 34]. Recently, Polson et al.
[21] introduced Polya-Gamma augmentation, and Galy-Fajou et al. [9]; Snell & Zemel [27] utilized
different likelihood functions and data augmentation to approximate the softmax function. These
methods have advanced the field by providing intuitive frameworks and improving modeling capabili-
ties for GP classifiers. Our work builds upon these foundations by focusing on a more generalized
likelihood formulation with enhanced flexibility and modeling capabilities for GP classifiers.

Bayesian meta-learning has been explored through various approaches to leverage prior knowledge
and adapt to new tasks. Finn et al. [8] introduced a Bayesian hierarchical modeling perspective,
capturing uncertainty at different levels. Grant et al. [10] recast meta-learning as inference in a
GP. Yoon et al. [38] introduced Bayesian MAML on the basis of Finn et al. [7]. Patacchiola et al.
[20]; Snell & Zemel [27] utilized GPs with deep kernels for task-specific inference. These works
made contributions to Bayesian meta-learning by addressing parameter updates, uncertainty modeling,
and prior distributions. Our work contributes by providing an effective alternative for task-level
updates and further provides insights into the coordination problem of bi-level optimization.

7 Limitations

While the logistic-softmax with temperature has proven to be theoretically superior to softmax in
data modeling, its performance and suitability are only verified in Bayesian meta-learning, leading
to certain limitations. Further research is necessary to explore the logistic-softmax function’s
performance and adaptability to various domains and problem settings.

8 Conclusions

In this paper, we introduce the logistic-softmax function with temperature which is simple yet highly
effective in improving classification accuracy and uncertainty calibration. Furthermore, we delve into
the theoretical property of the redesigned logistic-softmax function including both limiting behavior
and data modeling capability. Moreover, we apply mean-field approximation for deep kernel based
GP meta-learning for the first time. We also shed some light on the coordination problem between the
inner loop and the outer loop that appeared in bi-level optimization. In the future, it is an interesting
track to apply redesigned logistic-softmax to other domains such as multi-label classification.
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Appendix

I Proof of Theorem 3.1

Proof. We assume that f cn 6= 0 for all c = 1, . . . , C. For a given index k, if fkn > 0, σ(fkn/τ) goes

to 1 as τ → 0. Otherwise, σ(fkn/τ) goes to 0 if fkn < 0. Since LS(f , τ)k =
σ(fk

n/τ)∑C
c=1 σ(f

c
n/τ)

, when
maxc=1,...,C f

c
n > 0, we get the result combining these observations. As for maxc=1,...,C f

c
n < 0,

we have

lim
τ→0+

LS(f , τ)k =

(
1 + lim

τ→0+

∑
c 6=k

1 + exp(−fkn/τ)

1 + exp(−f cn/τ)

)−1

=

(
1 + lim

τ→0+

∑
c 6=k

fkn exp(−fkn/τ)/τ2

f cn exp(−f cn/τ)/τ2

)−1

=

(
1 + lim

τ→0+

∑
c 6=k

fkn
f cn

exp(−(fkn − f cn)/τ)

)−1
,

where we use L’Hôpital’s rule in the second equality. Since fkn/f
c
n > 0, exp(−(fkn − f cn)/τ) goes to

0 if fkn > f cn and goes to +∞ otherwise. Thus, we have limτ→0+ LS(fn, τ)k = I{k = c∗}, where
I{·} is the indicator function.

II Proof of Theorem 3.2

Proof. Without the loss of generality, we use τ = 1 in the following proof. Notice that for logistic-
softmax, we have

p(y = k|fn − C ′) =
1∑C

c=1 σ(f cn − C ′)/σ(fkn − C ′)
, C ′ ∈ R.

It’s sufficient to prove that the denominator converges to that of softmax at each point fn as C ′ goes
to infinity. This is true since for all c, k ∈ [C] we have

σ(f cn − C ′)
σ(fkn − C ′)

= exp(f cn − fkn) · 1 + exp(fkn − C ′)
1 + exp(f cn − C ′)

→ exp(f cn − fkn)

when C ′ →∞.

For the claim that S(fn − C0) = S(fn), one only needs to observe that the likelihood of softmax can
be rewritten as

p(yn = k|fn) =
1

1 +
∑
j 6=k exp(f jn − fkn)

=
1

1 +
∑
j 6=k exp((f jn − C0)− (fkn − C0))

.

We have shown that softmax is translational invariant w.r.t. its input vector fn, therefore completing
the proof.

III Proof of Theorem 3.3

Proof. Without the loss of generality, we use τ = 1 in the following proof.

To begin with, we prove the first equation and then give the proof of the second part of Theorem 3.3.
We introduce some extra notations that are used throughout the proof. Denote f c = (f c1 , . . . , f

c
N )> ∈

RN as the logits of N given points for class c. We write F = (f cn)N×C ∈ RN×C and f = vec(F)
as the logit vector, where we stack the logits of each class. It’s straightforward to verify that
f ∼ N

(
vec(a1TC

)
,K), where a is the mean vector on given points, K = diag(K1, . . . ,KC) ∈
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RNC×NC is the block diagonal matrix and Kc is the kernel matrix for each class. Denote y ∈ RN

as the label vector for the N given points, where yn ∈ [C].

For the first equation, notice that

p(y) =

∫ N∏
n=1

1

1 +
∑
j 6=yn exp(f jn − fynn )

p(f)df .

Denote f̃ ∈ RNC as follows:

f̃ jn =

{
f jn − fynn , if j 6= yn

fynn , if j = yn.
(1)

We denote f̃y ∈ RN where the n-th element of this vector equals to fynn . We also write f̃−y ∈
RN(C−1) to denote the rest of the elements in f̃ . Since Eq. (1) is a linear transformation of f ,
it’s straightforward to verify that f̃−y is a multivariate Gaussian variable with zero mean, thus the
distribution of it is irrelevant to a. Then we use the substitution rule for definite integrals and derive

p(y) =

∫ N∏
n=1

1

1 +
∑
j 6=yn exp(f̃ jn)

p(f̃y)df̃y

=

∫ N∏
n=1

1

1 +
∑
j 6=yn exp(f̃ jn)

p(f̃y | f̃−y)p(f̃−y)df̃

=

∫ N∏
n=1

1

1 +
∑
j 6=yn exp(f̃ jn)

p(f̃−y)df̃−y,

where p(f̃y | f̃−y) is integrated out in the third equation. Thus, p(y) is irrelevant to a since the
distribution of f̃−y is irrelevant to a. Therefore, we complete the proof of the first equation by showing
that p(y) only depends on kc.

Now we give proof to the second part. First we denote the marginal likelihood of y induced by ls
and softmax likelihood with gaussian prior mean a and covariance K as pls(y|a,K) and ps(y|K)
respectively. We start by pointing out the desired convergence result as follows:

lim
a→−∞

pls(y|a,K) = lim
a→−∞

∫
pls(y|F)p(F|a,K)dF

= lim
a→∞

∫
pls(y|F− a1TC)p(F|0,K)dF

=

∫
lim

a→∞
pls(y|F− a1TC)p(F|0,K)dF

=

∫
ps(y|F)p(F|0,K)dF = ps(y|K),

(2)

where the second equation holds due to the property of multivariate Gaussian variable. In the third
equation, we need to interchange the integration and limiting operations. To guarantee its feasibility,
we rely on the Dominated convergence theorem (DCT). To verify the condition of DCT, notice that,

pls(y|F− a1TC)p(F|0,K) =

N∏
n=1

σ(fynn − an)∑C
j=1 σ(f jn − an)

p(F|0,K)

≤ p(F|0,K).

This implies that pls(y|F− a1TC)p(F|0,K) is dominated by the Gaussian prior p(F|0,K), which is
integrable. Since Theorem 3.2 directly implies

lim
a→∞

pls(y|F− a1TC) = ps(y|F),
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thus by DCT, the desired convergence result in Eq. (2) is proved.

Our next step is to define a suitable mean and kernel function class for a and kc respectively. For
simplicity, we consider each sample point xi ∈ Rp. Define

A := {f : Rp → R},
K := {f : Rp × Rp → R, f is postive semi-definite}.

We also say a0(x) ≡ −∞,∀x ∈ Rp, where a0 ∈ A . We define the marginalized likelihood of y
induced by the logistic-softmax likelihood with a0 and kc evaluated at X as,

pls(y|X, a0, kc) := lim
a→−∞

pls(y|a,K)

= ps(y|K),
(3)

where the second equation is from Eq. (2). Finally, we define F (LS | A ,K ) and F (S | K )as,

F (LS | A ,K ) : = {f : f(y) = pls(y|a,K), ai = a(xi), k
c
ij = kc(xi,xj), a ∈ A , kc ∈ K ,X ∈ RN×p},

F (S | K ) : = {f : f(y) = ps(y|K), kcij = kc(xi,xj), k
c ∈ K , X ∈ RN×p}.

For each ps(·|X, kc) in F (S | K ), we have pls(·|X, a0, kc) = ps(·|X, kc) using Eq. (3), where
pls(·|X, a0, kc) ∈ F (LS | A ,K ). Thus, we have proved that

F (S | K ) ⊂ F (LS | A ,K ).

IV Derivation of Augmented Joint Distribution

In this section, we derive the Gibbs sampler and mean-field variational inference for a specific task.
The usual likelihood function for multiclass classification is the softmax function. Here, we replace
the softmax function with the logistic-softmax function [9]

p(yn = k | fn) =
σ(fkn/τ)∑C
c=1 σ(f cn/τ)

, (4)

where f cn = f c(xn), fn = [f1n, . . . , f
C
n ]>, k ∈ {1, . . . , C} and we omit the conditioning on xn.

In the following, we augment three auxiliary latent variables to make the likelihood appear in a
conjugate form.

Augmentation of Gamma Variables We utilize the integral identity 1/z =
∫∞
0

exp (−λz)dλ to
express Eq. (4)

p(y | F) =

N∏
n=1

σ(fkn/τ)∑C
c=1 σ(f cn/τ)

=

N∏
n=1

σ(fkn/τ)

∫ ∞
0

exp(−λn
C∑
c=1

σ(f cn/τ))dλn

=

∫ ∞
0

· · ·
∫ ∞
0

N∏
n=1

σ(fkn/τ) exp(−λn
C∑
c=1

σ(f cn/τ))dλ1 · · · dλN ,

where y = [y1, . . . , yN ]>, F is the N × C matrix of f cn. Therefore, we obtain the augmented
likelihood of Gamma variables

p(y,λ | F) =

N∏
n=1

σ(fkn/τ)

C∏
c=1

exp(−λnσ(f cn/τ)), (5)

where λ = [λ1, . . . , λN ]>.

Augmentation of Poisson Variables We rewrite the exponential term in Eq. (5) using the moment
generating function of the Poisson distribution exp(λ(z−1)) =

∑∞
m=0 z

mPo(m | λ) and the logistic
symmetry property σ(x) = 1− σ(−x).

p(y,λ | F) =

N∏
n=1

σ(fkn/τ)

C∏
c=1

∞∑
mc

n=0

σ(−f cn/τ)m
c
nPo(mc

n|λn).
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Therefore, we obtain the augmented likelihood of Poisson variables

p(y,λ,M | F) =

N∏
n=1

σ(fkn/τ)

C∏
c=1

σ(−f cn/τ)m
c
nPo(mc

n|λn), (6)

where M is the N × C matrix of mc
n.

Augmentation of Pólya-Gamma Variables The logistic function in Eq. (6) can be rewritten as a
scale mixture of Gaussians utilizing the Pólya-Gamma representation [21]

σ(z) = 2−1ez/2
∫ ∞
0

e−ωz
2/2PG(ω | 1, 0)dω,

where PG(ω | 1, 0) is the Pólya-Gamma distribution.

p(Y,λ,M | F) =

∫ ∞
0

· · ·
∫ ∞
0

N∏
n=1

C∏
c=1

2−(y
c
n+m

c
n) exp

(ycn −mc
n

2

f cn
τ
− ωcn

2

(f cn
τ

)2)
PG(ωcn | mc

n + ycn, 0)
λ
mc

n
n

mc
n!

exp(−λn)dω1
1 · · · dωCN ,

where we rewrite y in the one-hot encoding form Y which is a N × C matrix. Therefore, we obtain
the augmented likelihood of Pólya-Gamma variables

p(Y,λ,M,Ω | F) =

N∏
n=1

C∏
c=1

2−(y
c
n+m

c
n) exp

(ycn −mc
n

2

f cn
τ
− ωcn

2

(f cn
τ

)2)
PG(ωcn | mc

n + ycn, 0)

λ
mc

n
n

mc
n!

exp(−λn),

(7)
where Ω is the N × C matrix of ωcn.

Augmented Joint Distribution Introducing the GP priors on f c, we obtain the augmented joint
distribution

p(Y,λ,M,Ω,F) =

N∏
n=1

C∏
c=1

2−(y
c
n+m

c
n) exp

(ycn −mc
n

2

f cn
τ
− ωcn

2

(f cn
τ

)2)
PG(ωcn | mc

n + ycn, 0)

λ
mc

n
n

mc
n!

exp(−λn) ·
C∏
c=1

N (f c | ac,Kc),

(8)
where f c = [f c1 , . . . , f

c
N ]> is the c-th column of F, ac is the mean and Kc is the kernel matrix w.r.t.

observations for c-th class.

V Mean-field Variational Inference

The aforementioned Gibbs sampler is efficient because of closed-form solutions, but it is still not
efficient enough because the sampling from a Pólya-Gamma distribution is time-consuming. In order
to improve efficiency, the mean-field variational inference algorithm is proposed. In the mean-field
algorithm, we need to approximate the true posterior p(λ,M,Ω,F | Y) by a variational distribution
which is assumed to factorize over some partition of latent variables. Here, we assume the variational
distribution q(λ,M,Ω,F) = q1(M,Ω)q2(λ,F). Following the traditional mean-field method [3],
the optimal distribution for each factor can be expressed as

log q1(M,Ω) = Eq2 log p(Y,λ,M,Ω,F) + C1,

log q2(λ,F) = Eq1 log p(Y,λ,M,Ω,F) + C2,
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where C1 and C2 are constants. Substituting Eq. (8), we obtain

q1(Ω|M) =

N,C∏
n,c=1

PG(ωcn | mc
n + ycn, f̃

c
n), (9a)

q1(M) =

N,C∏
n,c=1

Po(mc
n | γcn), (9b)

q2(λ) =

N∏
n=1

Ga(λn | αn, C), (9c)

q2(F) =

C∏
c=1

N (f c | µ̃c, Σ̃c), (9d)

where

f̃ cn =
1

τ

√
E[f c2n ] =

1

τ

√
µ̃c2n + σ̃c2nn, (10a)

γcn =
exp(ψ(αn)− µ̃cn/2τ)

2C cosh(f̃ cn/2)
, (10b)

αn =

C∑
c=1

γcn + 1, (10c)

Σ̃c = (diag(ω̄cn/τ
2) + Kc−1

)−1, (10d)

µ̃c =
1

2τ
Σ̃c(yc − γc) + Σ̃cKc−1

ac, (10e)

ω̄cn = E[ωcn] =
γcn + ycn

2f̃ cn
tanh

f̃ cn
2
. (10f)

VI ELBO and Derivative

In this section, we derived the evidence lower bound for a specific task which is used to be optimized
w.r.t. the hyperparameters of deep kernels [9]:

log p(Y) ≥ L = Eq[log p(Y | λ,M,Ω,F)]− KL(q(λ,M,Ω,F)||p(λ,M,Ω,F)), (11)

where we omit the conditioning on hyperparameters Θ,

Eq[log p(Y | λ,M,Ω,F)] =

N,C∑
n=1,c=1

−(ycn + γcn) log 2 +
ycn − γcn

2τ
µ̃cn −

ω̄cn
2
f̃ c

2

n , (12a)

KL(q(λ,M,Ω,F)||p(λ,M,Ω,F)) = KL(q(F)||p(F)) + KL(q(λ,M,Ω)||p(λ,M,Ω)), (12b)

KL(q(F)||p(F)) =
1

2

C∑
c=1

(log |Kc| − log |Σ̃c| −N + Tr[Kc−1

Σ̃c] + (ac − µ̃c)>Kc−1

(ac − µ̃c)),

(12c)
KL(q(λ,M,Ω)||p(λ,M,Ω)) = KL(q(λ)||p(λ)) + Eq(λ)[KL(q(M)||p(M | λ))] (12d)

+ Eq(M)[KL(q(Ω |M)||p(Ω |M))],

KL(q(λ)||p(λ)) =

N∑
n=1

−αn + logC − log Γ(αn)− (1− αn)ψ(αn), (12e)

Eq(λ)[KL(q(M)||p(M | λ))] =

N,C∑
n=1,c=1

γcn(log γcn − 1)− γcn(ψ(αn)− logC) +
αn
C
, (12f)

Eq(M)[KL(q(Ω |M)||p(Ω |M))] =

N,C∑
n=1,c=1

− f̃
c2

n

2
ω̄cn + (γcn + ycn) log cosh(

f̃ cn
2

). (12g)
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We can get the analytical ELBO by summing up Eqs. (12a), (12c) and (12e) to (12g).

L =

N,C∑
n=1,c=1

−(ycn + γcn) log 2 +
ycn − γcn

2τ
µ̃cn −

ω̄cn
2
f̃ c

2

n

− 1

2

C∑
c=1

(log |Kc| − log |Σ̃c| −N + Tr[Kc−1

Σ̃c] + (ac − µ̃c)>Kc−1

(ac − µ̃c))

−
N∑
n=1

−αn + logC − log Γ(αn)− (1− αn)ψ(αn)

−
N,C∑

n=1,c=1

γcn(log γcn − 1)− γcn(ψ(αn)− logC) +
αn
C

−
N,C∑

n=1,c=1

− f̃
c2

n

2
ω̄cn + (γcn + ycn) log cosh(

f̃ cn
2

).

(13)

The gradient of ELBO w.r.t. Θ can be computed by the automatic differentiation technique.

VII Algorithm

Algorithm 1: Efficient Bayesian Meta-learning for Few-shot Classification
Training:
Input: Support and query data {Xt}Tt=1,

{Yt}Tt=1 for T tasks
Output: Hyperparameters Θ for the kernels
Initialize the variational parameters of each task

and hyperparameters of the kernels;
for Iteration do

# All tasks are implemented in parallel
for Task t do

# Update task-level variational parameters
until convergence

for Step do
Update f̃ cn, γ

c
n, αn, Σ̃

c, µ̃c, ω̄cn itera-
tively by Eq. (4.4a) − (Eq. (4.4f))

end
end
# Update meta-level hyperparameters
Update Θ by∇ΘL

end

Test:
Input: Support data X, Y; query data x∗;

learned hyperparameters Θ̂
Output: Label y∗
Initialize the variational parameters of test
task;

for Iteration do
# Update test-task variational parameters

until convergence
for Step do

Update f̃ cn, γ
c
n, αn, Σ̃

c, µ̃c, ω̄cn itera-
tively by Eq. (4.4a) − (Eq. (4.4f))

end
end
# Predict the test label
Predict y∗ by Eq. (4.6).

VIII Experimental Details

Datasets

We use three dataset scenarios as described below.

1. CUB. There are 200 classes and 11788 images in the Caltech-UCSD Birds (CUB) dataset.
We use the common split of 100 training, 50 validation, and 50 test classes [27].

2. mini-ImageNet. There are 100 classes associated with 600 images for each class in the
mini-ImageNet dataset. We also use the usual split of 64 training, 16 validation, and 20 test
classes as applied in Snell & Zemel [27] .

3. mini-ImageNet→CUB. This is a cross-domain scenario, where we employ the training
split of mini-ImageNet and the validation and test split of CUB.
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Comparison of Baselines

As for the description of baseline methods, we refer to Snell & Zemel [27] for a detailed overview.
Here we only compare the methods that are most similar to ours, which include DKT, LS (Gibbs),
and OVE.

1. Deep Kernel Transfer (DKT) [20] utilizes label regression to tackle the conjugacy issue
that appeared in classification. In DKT, the multi-class classification problem is transformed
into separate binary classification tasks via the one-vs-rest scheme, where labels {+1,−1}
are treated as continuous values.

2. Logistic-softmax with Gibbs sampling (LS (Gibbs)) [9] applies the logistic-softmax for
a conditional conjugate model after data augmentation. We consider the Gibbs sampling
version implemented by Snell & Zemel [27] for Bayesian meta-learning, whose inference
method is different from ours. Note that LS (Gibbs) does not use a temperature parameter,
which is essentially the scenario of τ = 1 in our notation system.

3. One-vs-Each Approximation (OVE) [27] approximates the lower bound of the softmax
function for conditional conjugacy after data augmentation. Although it is shown that OVE is
a pairwise composite likelihood version of the softmax likelihood, the general approximation
capability is weak as shown in the following example. As for implementation, Snell &
Zemel [27] utilizes Gibbs sampling as well. We also note that OVE is a transitional invariant
likelihood as opposed to the logistic-softmax likelihood.

We present a short example to illustrate the approximation ability of each method in Fig. 1. Here we
randomly generate 5,000 samples from N (−5, 1) for each class and plot the confidence histogram
and kernel density estimate of the softmax, Gaussian, logistic-softmax, and OVE likelihood. Appar-
ently, though OVE is an approximation to the lower bound of softmax, it is not similar to softmax
classification-wise.

Figure 1: Confidence (maxc p(y = c | f)) histogram and kernel density estimate for randomly
generated function samples fc ∼ N (−5, 1). Output probabilities are normalized for C = 5.

Training Protocols

All of our experiments use the Adam optimizer with a learning rate of 10−3 for the neural network
and a learning rate of 10−4 for other kernel parameters, following the setting in Patacchiola et al. [20].
During training, all methods use 100 randomly sampled episodes for an epoch. Each episode contains
5 classes and 16 query examples. At test time, 15 query points are evaluated for each episode. We
use the validation set to tune all hyperparameters, and the validation set is not applied for training. As
for the steps used for mean-field approximation, we run 2 steps during training time and 20 steps
during testing time.
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Additional Results

Now we provide some additional results on different kernels and the training steps of mean-field
approximation updates.

In Table 3 we present a comparison between different kernels (Cosine, Linear, Matérn, Polynomial
(p = 1), Polynomial (p = 2), and RBF) trained on 1-shot, ML, (τ < 1) scenarios of CUB and
domain transfer. We find that different kernels yield similar results, but the Cosine kernel generally
gives a marginally better accuracy across all tasks. This result is in line with both Patacchiola et al.
[20] and Snell & Zemel [27].

Table 3: Average 1-shot accuracy and standard deviation on 5-way few-shot classification for different
kernels. We use the exact same experiment settings as Cosine for other kernels. Results are evaluated
over 5 batches of 600 episodes with different random seeds.

Method CUB CUB→mini-ImageNet
Cosine 65.21 ± 0.45 40.43 ± 0.43
Linear 65.21 ± 0.50 39.86 ± 0.24
Matérn 64.42 ± 0.30 39.95 ± 0.15
Polynomial (p = 1) 64.23 ± 0.47 39.64 ± 0.23
Polynomial (p = 2) 64.40 ± 0.26 39.50 ± 0.22
RBF 65.14 ± 0.50 39.69 ± 0.18

Additionally, since the task-level update steps of mean-field approximation is a hyperparameter, we
investigate the specific effects of different steps. In Fig. 2 we demonstrate a comparison between
different steps (starting from 1 to 7) trained on 1-shot, ML, (τ < 1) scenarios of CUB and domain
transfer. We find that using 2 or 3 steps is generally optimal, as fewer steps may not lead to
convergence and more steps may block the gradient flow of ELBO. As we have mentioned, when the
task-level variables are detached from the computational graph, ELBO is not capable of generating
an accurate gradient flow for the deep kernel which leads to a collapse in performance.

Figure 2: Lineplots of average 1-shot accuracy and standard deviation on 5-way few-shot classification
for different steps. We use the exact same experiment settings for all steps. Results are evaluated over
5 batches of 600 episodes with different random seeds.

We also present some additional results with regard to the temperature hyperparameter τ in logistic-
softmax in Table 4. It might be helpful to see the variation in accuracy as the temperature changes.

Table 4: Average 1-shot and 5-shot accuracy and standard deviation on 5-way few-shot classification
on CUB. Results are evaluated over 5 batches of 600 episodes with different random seeds.

Temperature 0.2 0.5 0.75 1 1.5
1-shot 65.76 ± 0.40 65.16 ± 0.28 64.02 ± 0.29 60.85 ± 0.38 59.43 ± 0.25
5-shot 79.10 ± 0.33 78.48 ± 0.18 77.20 ± 0.13 75.98 ± 0.33 72.13 ± 0.20
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