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Abstract. Time series data is a common data type in real life, and
modelling of time series data along with its underlying temporal dynam-
ics is always a challenging job. Temporal point process is an outstand-
ing method to model time series data in domains that require temporal
continuity, and includes homogeneous Poisson process, inhomogeneous
Poisson process and Hawkes process. We focus on Hawkes process which
can explain self-exciting phenomena in many real applications. In clas-
sical Hawkes process, the triggering kernel is always assumed to be an
exponential decay function, which is inappropriate for some scenarios, so
nonparametric methods have been used to deal with this problem, such
as model independent stochastic de-clustering (MISD) algorithm. How-
ever, MISD algorithm has a strong dependence on the number of bins,
which leads to underfitting for some bins and overfitting for others, so
the choice of bin number is a critical step. In this paper, we innovatively
embed a Gaussian process regression into the iterations of MISD to make
this algorithm less sensitive to the choice of bin number.

Keywords: Hawkes process · MISD · Gaussian process
Nonparametric

1 Introduction

In a real application, data is always collected in sequential mode. How to model
time series data to discover the underlying temporal dynamics is a challenging
problem in this domain. To solve it, different models have been proposed in the
past such as recurrent neural network (RNN) [1] and temporal point process [2].
There are many variants of the latter, such as homogeneous Poisson process [3],
inhomogeneous Poisson process [4] and Hawkes process [5].

Hawkes process is a self-exciting temporal point process which can explain the
self-exciting phenomenon in time series data. In real applications, the occurrence
of events in the past will usually have a triggering influence on the future which
leads to a clustering effect, for example, in the earthquake domain [6], the crime
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domain [7] and the social network domain [8]. In classical Hawkes process, the
conditional intensity function can be expressed as:

λ(t) = μ +
∑

ti<t

γ(t − ti) (1)

where μ > 0 is the baseline intensity which is a constant, {ti} are the timestamps
of observed events before time t indexed by i, and γ(·) is the triggering kernel
representing the influence from ti to t. Generally, the triggering kernel γ(t − ti)
is always assumed to be an exponential decay function: α ·exp(−β(t−ti)), which
is inadequate to represent the actual influence in scenarios where it is not like
that. Furthermore, in some new fields, there could be lack of prior knowledge
about the form of γ(t − ti) or there is no analytic form to describe it [9,10]. In
this case, nonparametric methods can be used to estimate the general form of
the triggering kernel and the baseline intensity.

An expectation-maximization (EM) algorithm called model independent
stochastic de-clustering were proposed to perform nonparametric estimation of
the triggering kernel and baseline intensity [11]. Essentially MISD is a histogram
density estimator, so there are problems with it: the triggering kernel obtained
from MISD is a discrete function and the number of bins used in the model
has a vital impact on learning results. It can be seen from the experiments in
this paper that the learned triggering kernel is underfitting when fewer bins
are used and overfitting when using more. How to determine the optimal num-
ber of bins? We can compute the log-likelihood conditioned on bin number M :
log L({ti}|M) and compute M̂ from maximum likelihood estimation (MLE), or
from an un-normalized posterior distribution by multiplying the likelihood with
a prior distribution on M such as Poisson distribution1. But both these methods
will lead to extra computation which is undesirable. Can we propose a refined
MISD algorithm which does not depend on the choice of bin number severely?
In this paper we innovatively embed a Gaussian process (GP) regression into the
iterations of MISD to design a refined algorithm which is less sensitive to the
choice of bin number; we call it GP-MISD. In this new method, M can be set
to a large number to use over-segmented bins since it can prevent the learning
result from overfitting to some extent.

The remainder of the paper is organized as follows: In Sect. 2, we summarize
the related work in Hawkes process and its nonparametric estimations. In Sect. 3,
we describe the background knowledge about Hawkes process, MISD algorithm
and Gaussian process regression and propose our new algorithm GP-MISD. Syn-
thetic data and real data experiments and the detailed discussion are provided
in Sects. 4, and 5 concludes this paper.

2 Related Work

Temporal point process has been used as a continuous mathematical model to
reflect temporal dynamics and to predict the arrived time of the next event in
1 We assume all the bins are equally wide.
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many domains such as seismology [12], financial engineering [13], and stock mar-
ket [14]. Recently, the self-exciting process has become a hot topic for explaining
the clustering phenomenon in social networks [15] and crime. The classical self-
exciting processes, such as Hawkes process, have a limitation that the latent
triggering effect is always assumed to be parametric, which introduces compu-
tational convenience but limits the expressive ability of the model. To conquer
this problem, various nonparametric methods have been proposed, such as con-
sidering the triggering kernel as a linear combination of some kernels [16,17],
approximating the triggering kernel by an RNN [18] and empirically estimat-
ing the triggering kernel using a histogram density estimator (MISD) where the
resolution can be adapted by setting different number of bins for the histogram
[19]. Although maximum penalized likelihood estimation (MPLE) has been pro-
posed [19], which is a regularized MISD with an l2 norm on the gradient to
avoid overfitting, the gradient information can only regularize the local variance
which limits the use of this method. Based on MISD, the GP-MISD algorithm
we propose can produce a continuous triggering kernel function which introduces
dependence on all the locations on the triggering kernel. As a result, the method
is less likely to be overfitting when the bin number is chosen improperly.

3 Proposed Model

The GP-MISD algorithm is closely related to Hawkes process, MISD and Gaus-
sian process regression, so in Sects. 3.1 and 3.2 the preliminary knowledge about
these is provided. Most of the details about MISD are draw from [19]. GP-MISD
is formally described in Sect. 3.3.

3.1 Hawkes Process

Temporal point process is a stochastic process, whose realization is a sequence of
timestamps {ti}N

i=1 in [0, T ] where ti is the occurrence time of i-th event and T
is the observation time for the process. In temporal point process, an important
characterization is the conditional intensity function λ(t) which is defined as:

λ(t) = lim
δt→0

P (event occurring in [t, t + δt)|Ht)
δt

(2)

where Ht = {ti|ti < t} is the history before time t. Different temporal point
processes will have different conditional intensity functions to distinguish them.
For example, λ(t) is a constant for homogeneous Poisson process, a function of
time f(t) for inhomogeneous Poisson process, and a function of time and history
for Hawkes process. The specific intensity form of Hawkes process is already given
in (1). The summation of triggering kernels explains the nature of self-excitation,
which is the occurrence of events in the past will intensify events occurring in
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the future. Given a sequence of observed data {ti}n
i=1 in time interval [0, T ], the

log-likelihood of this list of event times can be expressed as:

log L =
n∑

i=1

log λ(ti) −
∫ T

0

λ(t)dt (3)

which can be used in MLE to perform inference for the parameters in the model.

3.2 MISD

Lewis and Mohler [19] provide details on how to use MISD algorithm in one
dimension Hawkes, which is an EM-based nonparametric algorithm to ease MLE.
Firstly, when the branching structure of a Hawkes process is observable, we can
define the following matrix:

Xij =

{
1 if event i is caused by event j

0 otherwise

Xii =

{
1 if event i is a baseline event

0 otherwise.

(4)

Let us assume baseline intensity μ is a constant and there is no prior knowl-
edge about the form of γ(·), so given the branching matrix, the log-likelihood
(3) could be decoupled into two independent parts: part μ and part γ(·),

log L({ti}|μ, γ) =

[
n∑

i=1

Xii log(μ)

]
− μT

+
n∑

i=2

⎡

⎣
i−1∑

j=1

Xij log (γ(ti − tj))

⎤

⎦ −
n∑

i=1

∫ T

ti

γ(t − ti)dt.

(5)

It is straightforward to rewrite this problem into an EM framework, which is
the MISD algorithm. When the branching structure is unobservable, the MISD
algorithm works by maximizing the expectation of the log-likelihood. Thus Xij

is replaced by pij , which is the probability of event i caused by event j. The
matrix pij is a lower triangular matrix

⎡

⎢⎢⎢⎢⎢⎣

p11
p21 p22
p31 p32 p33

...
. . .

pn1 pn2 pn3 · · · pnn

⎤

⎥⎥⎥⎥⎥⎦
(6)

where
∑i

j=1 pij = 1, because event i must be caused by previous events or the
baseline event.
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Then the EM iteration is:

(1) E-step: The update for the matrix P :

ps
ij =

γs(ti − tj)

μs +
∑i−1

j=1 γs(ti − tj)

ps
ii =

μs

μs +
∑i−1

j=1 γs(ti − tj)

(7)

where s is the iteration step.
(2) M-step: The update for baseline intensity:

μs+1 =
1
T

n∑

i=1

ps
ii (8)

where T is the observation duration.

Assuming the duration of γ(Δt) is limited: [0,Mδt] where M is the number of
bins, δt is the bin width, the update for rates is given by:

γs+1
m =

1
Nmδt

∑

i,j∈Am

ps
ij (9)

where Am is the set of pairs of events s.t. mδt � |ti−tj | � (m+1)δt, γm = γ(mδt)
where 0 � m � M −1, and Nm is the corresponding normalizing parameter with
respect to m-th bin. Equations (8) and (9) are derived from ∂

∂μE[log L] = 0 and
∂

∂γm
E[log L] = 0.

3.3 GP-MISD

The key idea in GP-MISD is to embed a Gaussian process regression into the
EM iterations, which makes use of those rates learned in each iteration step
to perform a regression and get a smooth mean triggering kernel. This smooth
mean triggering kernel will be used in the next iteration step, so the iteration
goes on.

Gaussian process is an infinite dimensional extension of multivariate nor-
mal distribution. In GP, every finite set of points has a multivariate normal
distribution, so it can be expressed as a distribution over functions in a contin-
uous domain. GP is specified by the mean function m(x) and covariance kernel
k(x, x′):

f(x) ∼ GP(m(x), k(x, x′)) (10)

where f(x) is a sample function drawn from GP. Without loss of generality, the
prior mean function can be assumed to be zero: m(x) = 0, and the only work



A Refined MISD Algorithm Based on Gaussian Process Regression 589

left is to define the covariance kernel k(x, x′). A widely used kernel is squared
exponential kernel:

k(xi, xj) = θ0 exp
(

−θ1
2

‖xi − xj‖2
)

(11)

where θ0, θ1 are the hyperparameters.
After getting the observation points (γs

1 , γ
s
2 , · · · , γs

M ) in iteration step s
in MISD, the GP regression is used to evaluate the posterior mean function
m(x|(γs

1 , · · · , γs
M )) which will be used as the γ(Δt) in the next iteration step.

Specifically, the new algorithm can be divided into three steps:

(1) E-step: The update for the matrix P :

ps
ij =

γ̄s(ti − tj)

μs +
∑i−1

j=1 γ̄s(ti − tj)

ps
ii =

μs

μs +
∑i−1

j=1 γ̄s(ti − tj)

(12)

(2) M-step: The update for baseline intensity and rates is same as before.
(3) GP-step: The update for Gaussian process predictive distribution:

γ̄s+1(Δt) = kT C−1
M γs+1 (13)

where CM is the matrix of C(Δtn,Δtm) = k(Δtn,Δtm) + σ2
noiseδnm, {Δti}M

i=1

are the x-values of M rate points, k(·) is the covariance kernel, and σ2
noise

is the variance of observation points’ noise, k = (k(Δt1,Δt), k(Δt2,Δt), · · · ,
k(ΔtM ,Δt))T , γs+1 = (γs+1

1 , γs+1
2 , · · · , γs+1

M )T are the y-values of M rate points
on step s+1. The final triggering kernel we obtain from this algorithm is γ̄(Δt).
Equation (13) is derived from the standard Gaussian process regression [20].

4 Experiment

4.1 Synthetic Data

For simplicity, we assume the true triggering kernel is an exponential decay
function: μ = 1, γ(t − ti) = 1 · exp(−2 · (t − ti)). Two sets of synthetic data are
generated from the Hawkes process specified above using the thinning algorithm
[12]. For each set, the observation duration T is set to 400, resulting in a real-
ization of about 850 events. The first set is used as the training data, and the
second one is the test data.

For the inference, it is assumed that the baseline intensity is a constant
and the form of the triggering kernel is unknown, so the goal is to infer μ and
γ(Δt). For MISD algorithm, we apply the training data for different bin numbers
ranging from 3 to 100. γ(Δt) is assumed to be zero outside the interval [0, 3] and
the number of iterations is set to 100. In the evaluation, the training error is
defined as − log L of the training data. Then the model learned is applied to the
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test data to get the test error which is defined as − log L of the test data. The
same process is also applied to the GP-MISD algorithm. The hyperparameters
θ0, θ1, σ2

noise are set to 2.3, 2.3 and 0.01 in the GP step.
The training error and test error for both algorithms appear in Fig. 1. It can

be seen that as the number of bins increases from 3 to 100, the training error
of MISD will decrease monotonically, while the test error will increase after
#bin = 8. But when we look at GP-MISD, the training error will not decrease
rapidly after #bin = 8 and the test error is almost constant after #bin = 8. These
results show that GP-MISD is less sensitive to the choice of bin number than
MISD which is very likely to be overfitting when too many bins are used. More
importantly, from test error we can see that GP-MISD is always superior to
MISD no matter how many bins are used, and this can also be found from the
fitting result of γ(Δt) in Fig. 2 which is based on #bin = 10, 40 and 100. It is
clear that the γ(Δt) learned from GP-MISD is closer to the ground truth and
more stable, which shows the superiority of GP-MISD.

Fig. 1. The training error and test error of MISD and GP-MISD.

Fig. 2. The fitting result of γ(Δt) from MISD and GP-MISD based on 10 bins (left),
40 bins (middle) and 100 bins (right).

4.2 Real Data

We evaluate the performance of GP-MISD and MISD on real world datasets
from two different domains.
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Motor Vehicle Collisions in New York City: This motor vehicle collision
dataset2 is provided by the New York City Police Department (NYPD). It con-
tains about 1.05 million vehicle collision records in New York City from July,
2012 to September, 2017. The dataset includes the collision date, time, borough,
location, contributing factor and so on. For our model, the most valuable infor-
mation is the date and time. We filter out the collision records in Manhattan,
Queens and Bronx caused by ‘Alcohol Involvement’. For each borough, half of
the records are used as the training data and the other half as the test data. Just
as the synthetic data, we define the test error as − log L of the test data. There
are some collisions happening at the same time, as the resolution is at minute
level, which violates the definition of the temporal point process. To avoid this,
we add a small time interval to all the simultaneous records to separate them.
The hyperparameters θ0, θ1, σ2

noise are set to 3.5, 3.5, 0.01 for Manhattan, 4.5,
4.5, 0.01 for Queens and 3.9, 3.9, 0.01 for Bronx. 100 iterations are performed
in both algorithms. The duration of γ(Δt) is set to 3.0 and the time unit is
1.16 day.

NYPD Complaint Data 2017: This dataset3 includes all valid felony, misde-
meanour and violation crimes reported to the NYPD for all complete quarters so
far in 2017. It includes 228 thousand complaint records in New York City. The
columns are complaint number, date, time, offense description, Borough etc. We
filter out the complaints in Manhattan, Queens and Brooklyn, and the offense
description is ‘THEFT-FRAUD’. Again, for each borough, half the records are
used as training data and the others as test data. Add a small time interval to
separate all the simultaneous records. The hyperparameters θ0, θ1, σ2

noise are
set to 6.45, 6.45, 0.01 for all boroughs. 100 iterations are performed in both
algorithms. The duration of γ(Δt) is set to 3.0 and the time unit is 11.6 days.

Experiment Results: For Motor Vehicle Collisions in New York City, the
learned μ, γ(Δt) and the test errors of both algorithms for #bin = 20, 50, 80,
100 are shown in Table 1 and Fig. 3.

Table 1. Motor Vehicle Collisions in New York City: the learned baseline intensity μ
from MISD and GP-MISD based on #bin=20, 50, 80, 100.

2 https://data.cityofnewyork.us/Public-Safety/NYPD-Motor-Vehicle-Collisions/h9gi
-nx95.

3 https://data.cityofnewyork.us/Public-Safety/NYPD-Complaint-Data-Current-YTD/
5uac-w243.

https://data.cityofnewyork.us/Public-Safety/NYPD-Motor-Vehicle-Collisions/h9gi-nx95
https://data.cityofnewyork.us/Public-Safety/NYPD-Motor-Vehicle-Collisions/h9gi-nx95
https://data.cityofnewyork.us/Public-Safety/NYPD-Complaint-Data-Current-YTD/5uac-w243
https://data.cityofnewyork.us/Public-Safety/NYPD-Complaint-Data-Current-YTD/5uac-w243
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Fig. 3. Motor Vehicle Collisions in New York City: the learned γ(Δt) from MISD and
GP-MISD based on #bin=20, 50, 80, 100 (upper, time unit is 1.16 day), and test
errors of both algorithms for #bin=20, 50, 80, 100 (lower).

For NYPD Complaint Data 2017, the learned μ, γ(Δt) and the test errors of
both algorithms for #bin = 30, 50, 75, 100 are shown in Table 2 and Fig. 4.
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Table 2. NYPD Complaint Data 2017: the learned baseline intensity μ from MISD
and GP-MISD based on #bin=30, 50, 75, 100.

From both experimental results, we can see that γ(Δt) from GP-MISD is
smoother and more stable than that from MISD and the test error of GP-MISD
is always lower than MISD, which is consistent with the synthetic data result: the
former effectively avoids the overfitting phenomenon and makes this algorithm
less sensitive to the choice of #bin. For vehicle collision, the triggering patterns
in different boroughs are similar and the triggering effect lasts for about 4.5
days; for crime complaint, the triggering patterns in different boroughs are sim-
ilar and the triggering effect lasts for almost one month, but significant in the
first 10 days. Moreover, we can see that the trend of triggering kernel is quite
dynamic, especially in the short period after the source event happened, e.g.,
within about 0.5 day after the initial collision in Fig. 3, or about 5 days after
the initial complaint in Fig. 4. To capture the trend, the #bin must be set to
be large enough so that the resolution is high, however, too large a #bin will
cause overfitting, such as spikes in the triggering kernel. This is the advantage
of GP-MISD to represent the triggering kernel with continuity, capturing any
dynamic trends without overfitting.

Setting hyperparameters θ0 and θ1 is also a key step in all GP-based meth-
ods. The hyperparameters used to determine the GP kernel values implicitly
encode the information on how flexible the GP could be. The optimization of
hyperparameters in GP has been proved to be a non-convex problem [20], which
may introduce some difficulty in learning hyperparameters. In our experiments,
we use grid search to find the optimal hyperparameters and find that setting the
hyperparameters in a reasonable range does not severely affect the final result.
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Fig. 4. NYPD Complaint Data 2017: the learned γ(Δt) from MISD and GP-MISD
based on #bin=30, 50, 75, 100 (upper, time unit is 11.6 days), and test errors of both
algorithms for #bin=30, 50, 75, 100 (lower).

5 Conclusion

To conclude, in this paper we propose a refined MISD algorithm for Hawkes
process: GP-MISD algorithm which can effectively avoid overfitting when more
bins are used. The key thought of embedding a Gaussian process regression
into the EM iterations actually can be applied to most algorithms based on
bins, resulting in a smooth effect to avoid overfitting. GP-MISD inherits the
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advantage from MISD to predict the baseline intensity and triggering kernel
without any prior knowledge of the function form of latent triggering kernel. We
have performed experiments on both synthetic and real datasets demonstrat-
ing that GP-MISD is less sensitive to the choice of #bin and has consistent
superiority to MISD.
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