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Abstract. Statistical heterogeneity, especially feature distribution
skewness, among the distributed data is a common phenomenon in prac-
tice, which is a challenging problem in federated learning that can lead
to a degradation in the performance of the aggregated global model. In
this paper, we introduce pFedV, a novel approach that leverages a vari-
ational inference perspective by incorporating a variational distribution
into neural networks. During training, we add the KL-divergence term to
the loss function to constrain the output distribution of layers for feature
extraction and personalize the final layer of models. The experimental
results demonstrate the effectiveness of our approaches in mitigating the
distribution shift in feature space in federated learning.

Keywords: federated learning · statistical heterogeneity · variational
inference

1 Introduction

Despite the impressive results that deep learning-based approaches have achieved
in recent decades, training deep learning models is data-driven and intensively
depends on the availability and accessibility of high-quality data. Conventionally,
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data is brought to the computation by following a data centralization approach,
leading to privacy breaches and the loss of data sovereignty. As the related issues
are increasingly aware, data protection legislation has emerged worldwide in the
last few years, e.g., the General Data Protection Regulation (GDPR) in the
European Union explicitly prohibits organizations from exchanging data with-
out clear consent from users. Besides, commercial competition and complicated
administrative procedures also hinder data integration and data sharing, which
makes data exist in the form of isolated islands [22]. As a promising paradigm to
provide privacy protection in machine learning, federated learning [16] has been
widely adopted in academia and industry. Federated learning enables the par-
ticipating clients collaboratively train a global machine learning model without
revealing local private data. Due to its privacy-preserving characteristics, feder-
ated learning is increasingly drawing attention from a wide range of applications
and domains such as healthcare [18], finance [22,23], and IoT [8].

Despite federated learning’s benefits, its continued popularity is usually
accompanied by new emerging problems [6,11], such as the lack of trust among
participants, the vulnerability exposed to privacy inferences, the limited or unre-
liable connectivity, etc. Among these, statistical heterogeneity is considered to
be the most challenging problem. It is also called the non-IID problem, where
data are not independent and identically distributed across clients. For example,
medical radiology images in different hospitals are acquired by different devices
using disparate standards [14]. Studies have shown that non-IID data can lead
to poor accuracy and slow convergence, sometimes even divergence, if with-
out appropriate optimization algorithms [13]. In practice, the non-IID scenarios
are complicated to be categorized, but statistical heterogeneities with regard to
label distribution, feature distribution and quantity are mainly being studied.
To tackle the aforementioned challenges, it is necessary to adopt appropriate
optimization algorithms for federated learning.

In this work, we mainly focus on the feature distribution skewness problem.
The main contributions of our paper could be summarized as follows: (1) we
propose a novel FL training strategy, called pFedV to mitigate the covariance
shift, i.e., one of the major problems of statistical heterogeneity. The last layer
for feature extraction is modified before the classification layers in the neural
networks, instead of compressing the input into the hidden feature space, that
layer generates the variational distribution of the feature maps. A regularization
term is added in the loss function for the local training in federated learning,
i.e., the KL-divergence term makes the variational distribution of the local model
close to the output distribution of the global model or a certain pre-defined dis-
tribution. We design two variational distribution models, a strong restricted one
using zero-mean, unit-variance Gaussian for all clients and another one using
the distribution in the global model. (2) Furthermore, we adopt the idea of
FedBN [14] to train the last classification layer individually at each client, as a
personalized technique for federated learning. (3) Finally, we evaluate our pro-
posed approaches on five related but heterogeneous data sets and our empirical
studies validate pFedV’s superior performance on non-IID data.
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2 Related Work and Background

2.1 Federated Learning

Unlike conventional machine learning where training is centralized and the
data is collected from different sites and stored in central storage [1], feder-
ated learning is a distributed machine learning paradigm and trains a global
model across data generated from distributed clients participating in each com-
munication round. A typical federated learning system consists of a server and
clients, where the server orchestrates the training process by repeating the
steps including client selection, model distribution, client training and model
aggregation [6], and the clients train the global model with local data. The
server aggregates the collected client models according to a specified strategy
and the aggregated global model is expected to surpass the performance of
independently trained client models. Considering multi-class classification prob-
lem, given K clients with client i holding a dataset Di := {(x(n)

i , y
(n)
i )}Ni

n=1,
where x(n)

i ∈ X ⊆ R
D and y

(n)
i ∈ {1, 2, · · · , C}, Ni is the number of data on

client i, D is the number of input dimension and C is the number of classes,
federated learning can basically be formalized as an optimization problem to
minimize the objective function min F(θ) =

∑K
i=1 πiFi(θ), where θ, πi and

Fi are the global model, the relative impact and the local objective function
Fi(θ) = 1

Ni

∑n=Ni

n=1 L(θ,x(n)
i , y

(n)
i ) for client i, respectively. The relative impact

πi can be user-defined with
∑K

i=1 πi = 1 normally as Ni/N , where N =
∑K

i=1 Ni

is the total number of samples. FedSGD [16] used stochastic gradient decent as
the optimizer and updated the model on the server for each local training step.
However, this approach has a main obstacle i.e., high communication cost. and
potential risk of data leakage from gradients [5]. To reduce the communication
cost and prevent privacy leakage, FedAvg [16], instead of the one-step gradient
descent scheme, is an aggregation strategy that updates models with multiple
steps.

2.2 Statistical Heterogeneity

The local objective function Fi is often defined as the empirical risk over local
data and is the same across all clients, while the local data distribution Pi(X,Y )
often varies among different clients capturing data heterogeneity. The joint dis-
tribution Pi(X,Y ) can be rewritten as Pi(X|Y )Pi(Y ) and Pi(Y |X)Pi(X) and
Kairous et al. simplified the non-identical distributions into five categories,
namely (1) covariate shift as feature distribution skew, (2) prior probability
shift as label distribution skew, (3) concept shifts including same label- but dif-
ferent feature distributions and same feature- but different label distributions,
and (4) quantity skew [6]. In practice, the non-identical distribution can be com-
bined and even more complicated. Studies [13] show that the performance on the
convergence rate and the accuracy of FedAvg on heterogeneous data are signifi-
cantly reduced, compared to the results on homogeneous data. Empirical works
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address non-IID issues by modifying operations in different steps. For example,
FedProx [12] used a proximal term in the local training stage as a regularization
term to suppress the divergence of model updates. FedNova [21] improved the
aggregation stage by considering different parties may conduct different numbers
of local steps. Li et al. [10] proposed comprehensive data partitioning strategies to
cover the typical non-IID data cases. To mitigate such performance degradation,
FedBN [14] is designed to alleviate the feature shift before averaging models via
local batch normalization. Anit et al. [20] chose to add a proximal item to reduce
the difference between the global model and the local model parameters, avoid-
ing the failure of convergence during training. Mou et al. [17] demonstrated that
additional small balanced datasets can be used to overcome model differences
caused by class imbalance. Sai et al. [7] proposed SCAFFOLD that uses a control
variable (variance reduction) to correct for client drift in local updates, which
is claimed to reduce the number of communication rounds required for training
and the impact due to data heterogeneity or client sampling. Recently, a lot of
work apply the Bayesian framework to federated learning. Instead of maximiz-
ing the log-likelihood log p(D|θ), the Bayesian framework is to find the posterior
of model parameters as p(θ|D) = p(D|θ)p(θ)

p(D) , where p(θ) is the prior of model
parameters, p(D|θ) is the likelihood. FedBE [4] adopted Bayesian inference to
achieve robust aggregation of local models through Bayesian model ensemble. It
uses Gaussian or Dirichlet distributions and Monte to efficiently model data dis-
tributions. FOLA [15] proposed to approximate the client and server posteriors
using online Laplacian approximation, and employed a multivariate Gaussian on
the server side to construct and maximize the global posterior, thereby reducing
aggregation errors and local forgetting due to large model differences. pFed-
Bayes [24] introduced the uncertainty of weights, i.e., Bayesian neural networks
(BNNs) [3], into the federated learning system. Each client achieves personal-
ization by balancing between the construction error of its own private data and
the KL divergence with the global model.

2.3 Variational Inference

Variational autoencoder (VAE) [9] is a generative model that consists of an
encoder yielding approximate posterior distribution qθ(z|x) and a decoder yield-
ing approximate likelihood distribution pφ(x|z). The objective of VAE is to min-
imize the KL-divergence between approximate posterior and real posterior as
shown in Eq. 1.

DKL(qθ(z|x)||p(z|x)) = −
∫

qθ(z|x) log(
p(z|x)
qθ(z|x)

)dz (1)

The evidence lower bound (ELBO) is defined as the boxed part on the right-
hand side in Eq. 2. We note that the log probability of the data on the left-hand
side in Eq. 2 is a constant, therefore maximizing the ELBO is equal to minimizing
the KL-divergence.
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log p(x) = DKL(qθ(z|x)||p(z|x)) +
∫

qθ(z|x) log(
pφ(x|z)p(z)

qθ(z|x)
)dz (2)

The ELBO can be derived into two terms, namely, the KL-divergence term
and the reconstruction term as shown in Eq. 3. The KL-divergence term is a
constraint on the form of the approximate posterior as a regularizer while the
reconstruction term is a measure of the likelihood of reconstructed data output
at the decoder. The detailed derivation is available in [19].

ELBO =
∫

qθ(z|x) log(
p(z)

qθ(z|x)
)dz +

∫

qθ(z|x) log(pφ(x|z))dz (3)

= DKL(qθ(z|x)||p(z)) + Ez∼qθ(z|x)[log pφ(x|z)] (4)

3 Methodology

3.1 Problem Formulation

As mentioned above, we consider the horizontal federated learning scenario (i.e.,
each client shares the same feature space but differs in sample ID space) with a
supervised learning task (e.g., multi-class classification). We use neural networks
for the task and formalize as a function f(x) = h(g(x)) consisting of two parts,
i.e., g(·) is the encoder function parameterized by θg that extracts input features
and the h(·) is the classifier function parameterized by θh that classifies the
extracted features. We write z = g(x) and y = h(z), where z ∈ R

M and M is
the dimension of the latent representations. Usually, deep neural networks are
formed by stacking layer upon layer. Therefore, the parameters of the encoder
and classifier can be further formulated as θg = (θ(1)g , θ

(2)
g , · · · , θ

(G)
g ) and θh =

(θ(1)h , θ
(2)
h , · · · , θ

(H)
h ), where G and H are the number of layers in the encoder

and classifier, and θ
(i)
g and θ

(j)
h denote the parameters of i-th and j-th layer in

the encoder and classifier, respectively. For the statistical heterogeneity, we focus
on feature distribution skewness, i.e., for two clients, their corresponding joint
distributions vary due to the covariate shift, i.e., Pi(X,Y ) �= Pj(X,Y ),∀i �= j
since Pi(X) �= Pj(X),∀i �= j, assuming the conditional distribution P (Y |X) is
shared across clients.

3.2 Derivation of Variational Distribution Constraints

In our model, we denote the input and output of the neural networks as x and y
and the latent representation as z. We aim to learn the true posterior distribution
p(z|y) for a given label y, which ensures that the learned latent representation
is informative about the label and can be used to make accurate predictions on
new data. In general, it is difficult to infer the posterior of latent variable z for a
given label y when the likelihood is non-conjugated to the prior. To circumvent
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this issue, we resort to the variational inference [2] which uses a variational dis-
tribution to approximate the true posterior. Following the standard variational
inference, the objective is to minimize the KL divergence between the variational
distribution qθ(z)1 and the true posterior (as shown in Eq. 5) to learn a vari-
ational distribution that is as close as possible to the true posterior, which is
equivalent to maximizing the evidence lower bound (ELBO).

DKL(qθ(z)||p(z|y)) = −
∫

qθ(z) log(
p(z|y)
qθ(z)

)dz (5)

Similar to the derivation of the ELBO of VAE, we derive the ELBO2 as in Eq. 6.
Basically, ELBO consists of two parts: on the one hand, it enforces the model to
fit the data better with the log-likelihood term; and on the other hand, it makes
the variational distribution qθ(z) as close as possible to the prior p(z) by using
Kull-back-Leibler (KL) divergence.

ELBO = Ez∼qθ(z) log p(y|z) − DKL(qθ(z)‖p(z)), (6)

Our goal is to find the optimal variational distribution of the latent repre-
sentation z. Specifically, we assume the variational distribution of z is a Gaus-
sian distribution qθ(z) = N (z|μθg

(x),diag(σ2
θg

(x))) where diag(·) denotes the
diagonalization of a vector. The mean and variance are modeled by an encoder
whose parameters are denoted as θg. After drawing a z from the corresponding
approximate variational distribution from qθ(z), known as the reparameteriza-
tion trick [9], we can classify the current sample with the help of a classifier
constructed by another neural network ŷ = h(z) where ŷ is the predicted class
label and h(·) denotes the classifier parameterized by θh. We replace the log-
likelihood term in 6 by the cross entropy loss in our case and finally obtain the
following objective for our model, where CE is the cross entropy loss:

θ∗
g , θ∗

h = argmin
θg,θh

Eqθg (z)
CE(ŷθh

(z), y) + αDKL(qθg
(z)‖p(z)), (7)

Comparing to conventional classification model training, a KL divergence
term is added to the objective function as shown above. We add a weight factor
α to the KL term, which is a hyperparameter, to adjust the strength of the
penalty. In our case, we set it to 0.5 in all experiments related to variational
distribution.

3.3 Personalized Federated Learning with Variational Distribution
Constraints

In this section, we present our proposed approach, personalized federated learn-
ing with variational distribution constraints (pFedV). Figure 1 gives the overview
of pFedV.
1 The variational distribution is the output of the encoder parameterized by θ, which

is equivalent to θg in the previous section.
2 We omitted x in the formula since all distributions are given the condition of x, e.g.,

qθ(z) = qθ(z|x).
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Fig. 1. Overview of pFedV: At each communication round, the server sends the global
model to the clients participating in the local training; During the local training, models
are trained with the above-mentioned loss function; After training for a given number of
epochs, model updates are sent back to the server for the model aggregation, in which
the last layer for classification is reserved at each client if the personalized setting is
chosen

Like conventional federated learning systems, a server is employed for orches-
trating the federated learning process repeating the steps of model update and
aggregation. The blue bidirectional arrows between the server and clients indi-
cate the communication for the model update. The server sends the global model
to the clients at the beginning of each communication round and the clients send
local models to the server after the local training.

The variational distribution constraints and loss functions described above
are applied during the local training. We make an assumption for the variational
distribution, i.e., the Gaussian distribution. The encoder of the neural network
is modified to output the mean and standard deviation (for the non-negativity
guarantee of standard deviation, we use log variance instead).

For the construction of the prior, we utilize two different strategies: (1) a
fixed prior distribution like the classical variational inference and (2) contin-
uous update. For the fixed prior solution, we use strong prior constraints, i.e.,
zero-mean, unit-variance Gaussian distribution for all clients. For the continuous
update solution, we abstract the aggregated knowledge into the prior distribu-
tion and use the output of the variational distribution of the global model,
i.e., the prior is constantly updated as the server communicates with clients
in our federated learning framework. Specifically, we assume the prior of z is
also a Gaussian distribution p(z) = N (z|μθs

(x),diag(σ2
θs

(x))). The mean and
variance are modelled by another encoder whose parameter is denoted as θs.
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With the construction of prior and variational posterior by two encoders, the
KL divergence term in the loss function makes the posterior of extracted fea-
tures from clients close to the global one.

Furthermore, the personalized variant of federated learning is proposed for
personalizing the global model for each client in the federation to overcome data
heterogeneity issues. In our approaches, we propose to reserve the parameters of
the last layer of the classifier θ

(H)
h to achieve personalization.

4 Experiments

4.1 Experimental Settings

To evaluate the performance of our proposed approaches in the above method-
ologies in the non-IID scenario of federated learning. we conducted extensive
experiments in comparison with baselines, i.e., single-site training and FedAvg,
FedProx, FedBN and FOLA. Additionally, we report the results of the conducted
experiments and analyze the effect of variational distribution constraints.

Datasets. To demonstrate the feature distribution skewness problem, we con-
duct all experiments on Digits-Five dataset, namely MNIST, SVHN, USPS, Syn-
thetic Digits and MNIST-M. They all contain digit images and are for the multi-
class classification task. Figure 2 shows some sample images of the Digits-Five
dataset, from which we can observe the non-IID phenomenon in feature space,
i.e., the digits from different datasets vary considerably.

Model. For all experiments presented in this section, we implement a simple
convolutional neural network model for classification with three convolutional
layers with 5 × 5 kernel (the first and the second with 64 channels and the last
with 128 channels, each followed by batch normalization, 2 × 2-max pooling
and ReLU activation) and three fully connected layers with batch normalization
followed by ReLU activation (the first with 2048 units, the second with 512 units
and the last with 10 units a.k.a. logits). In between, the extracted feature maps
by convolutional neural networks are flattened into a 6272-dimensional vector.
For variational distribution, we doubled the channels of the third convolutional
layer, that the first half represents the mean and the second half represents the
variance of the encoder output, and by using the reparameterization technique
draw the feature maps following corresponding distributions.

Setups. MNIST, SVHN, USPS, Synthetic digits, and MNIST-M consist of the
training sets of 60000, 73257, 7291, 479400, and 60000 examples and test sets
of 10000, 26032, 2007, 9553, 10000, respectively. In our experiments, we set the
quality of data at each client to 7291 and models evaluate models on the original
test sets. The image size and the number of channels of images are different
from each dataset. We resize all data into the size of 28 × 28 and the number of
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channels of input data is set to 3. For single-site training, models are trained for
50 epochs, while in federated settings the number of communication rounds is set
to 50 and at each communication round, models are trained for one epoch at each
client. All experiments adopt the stochastic gradient descent (SGD) optimizer
with a learning rate of 0.01 and batch size of 32. For FOLA, the weight factor
of prior task loss is set to 0.5 (a.k.a., CSD importance) and same for the weight
factor of KL divergence term our proposed pFedV. Since the classes are relatively
balanced, accuracy (in percentage) is the only metric we used to measure and
compare the performance of models trained in different ways.

Fig. 2. Example images of datasets used for feature shift (Non-IID) experiments.

4.2 Results

We conduct experiments of single-site training, i.e., models are trained on each
client individually and tested on the test sets of MNIST, SVHN, USPS, Syn-
thetic Digits and MNIST-M. The results of the accuracy of single-site trained
models are illustrated in Table 1. Each row represents a model trained on the
corresponding dataset individually. We can observe that the high-performance
values always occur on the diagonal, i.e., models fit well on the test set of the
dataset that is the same as that used for training. Of course, there is the possibil-
ity of overfitting due to small data sets. We also found that feature complexity is
also one of the factors to influence model performance. For example, MNIST and
USPS are two datasets with relatively simple features, while SVHN is much more
complex as it often occurs more than one digit in one single picture obtained from
street view. The interesting result in this table is that the MNIST accuracy of the
model trained on MNIST-M is even higher than MNIST-M itself since MNIST-
M extended MNIST dataset with randomly extracted patch background. The
model trained on MNIST-M has learned the basic features of MNIST with addi-
tional generalized feature abstraction and thus works even better on MNIST.
However, single-site trained models are overall poor in generalization to other
datasets. For example, the second column shows that models trained on other
datasets can hardly perform well on SVHN test set, e.g., only 7.95% by the
model trained on USPS.

To evaluate the contribution of our approaches to overcoming the non-IID
problem in federated learning setting, we compare the results with baselines such
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Table 1. Results of models via single site training on test sets of MNIST, SVHN,
USPS, Synthetic Digits and MNIST-M

Model (trained on) MNIST SVHN USPS Synthetic Digits MNIST-M

MNIST 98.72 19.73 28.50 14.92 37.28

SVHN 51.48 85.18 64.52 81.43 37.11

USPS 24.41 7.95 97.11 23.76 18.60

Synth 82.63 77.97 84.26 95.04 54.19

MNIST-M 96.63 30.17 56.05 41.94 93.62

as FedAvg, FedProx and FedBN, as well as one of the other Bayesian methods
FOLA, as illustrated in Table 2. In general, we can see the effectiveness of vari-
ational distribution constraints as the results of FedV that without the person-
alized layer is also improved on all test sets, which also shows the generalization
property of the variational distribution constraints. However, compared with
continuously updated prior, the fixed prior does not provide a stable generaliza-
tion guarantee, for example, it is even worst than FedAvg on SVHN. Overall, our
pFedV outperforms others as it achieved 2.36%, 1.05%, 1.74% 1.79% improve-
ment on SVHN, USPS, Synthetic Digits and MNIST-M and slight improvement
on MNIST in comparison with FedAvg.

Table 2. Results of methods on test sets of MNIST, SVHN, USPS, Synthetic Digits
and MNIST-M in the federated setting

Methods MNIST SVHN USPS Synthetic Digits MNIST-M

FedAvg 98.86 83.23 96.16 93.43 90.56

FedProx 98.61 83.36 96.01 93.66 90.59

FedBN 98.67 86.58 97.21 94.06 91.79

FOLA (CSD 0.5) 98.83 86.46 96.86 94.67 90.50

FedV 98.74 84.80 96.71 94.14 90.93

FedV (Gaussian prior) 98.60 83.04 96.51 93.54 90.46

pFedV 98.91 85.99 97.21 95.17 92.35

pFedV (Gaussian prior) 98.86 83.65 97.21 94.69 91.74

5 Conclusion

In this paper, we propose a novel federated learning training strategy pFedV to
tackle the non-IID problem in federated learning, in particular the covariate shift,
a.k.a. feature distribution skewness. Through empirical results, we demonstrate
that the proposed approaches vastly improved the federated learning accuracy
performance under the scenario of non-IID problem where feature distributions



Personalized Federated Learning with Variational Distribution Constraints 293

vary across the clients and the results are comparable to state-of-the-art methods
like FedBN and FOLA. We have shown the generalization capability of varia-
tional distribution in federated learning and the advance of it combined with
personalization. For future work, it deserves further investigation of the impact
of the combination of multiple variational distribution constraint layers, since
the framework is scalable. Besides, it will be interesting to explore more non-IID
scenarios and extend to more general settings in addition to feature distribution
skewness.
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