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Abstract. The impact from past to future is a vital feature in modelling
time series data, which has been described by many point processes, e.g.
the Hawkes process. In classical Hawkes process, the triggering kernel is
assumed to be a deterministic function. However, the triggering kernel
can vary with time due to the system uncertainty in real applications. To
model this kind of variance, we propose a Hawkes process variant with
stochastic triggering kernel, which incorporates the variation of trigger-
ing kernel over time. In this model, the triggering kernel is considered
to be an independent multivariate Gaussian distribution. We derive and
implement a tractable inference algorithm based on variational auto-
encoder. Results from synthetic and real data experiments show that
the underlying mean triggering kernel and variance band can be recov-
ered, and using the stochastic triggering kernel is more accurate than the
vanilla Hawkes process in capacity planning.
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1 Introduction

Point process is a common statistical model in describing the pattern of event
occurrence in many real world applications, such as a series of earthquakes and
the order book in finance. Mutual dependence between events is an important
factor in describing the clustering effect in point process. A variety of models
are proposed for the dependence, such as Hawkes process (HP) [10] and correct-
ing model [16]. Among those models, HP is the most extensively used one for
modelling the self-exciting phenomenon where the influence decays over time.

HP has been used to estimate the intensity (rate of event occurrence) by
accumulating the triggering effect from past events. As an intensity estimator,
it has been used widely in social networks [18], crime [14] and financial engi-
neering [8]. The triggering kernel in most HP implementations [8] is modelled as
a deterministic function. In the real world, however, the actual triggering effect
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from each event can vary because of the system uncertainty and the deterministic
triggering kernel is rather limited in capability to model the variation. To model
this phenomenon, we introduce variance into the triggering kernel to enable the
triggering kernel of HP to be stochastic. We visualize it as a band addition to
the triggering kernel (see the example in Fig. 1a).

The importance of the band may be ignored in real applications, because
the learned average triggering kernel usually has the largest likelihood to fit the
observed data. As a result, when we do prediction, the vanilla HP would even-
tually be used. However, as we can see later, this band is meaningful for the
risk-based planning. For example, when capacity planning is performed in the
taxi allocation problem with HP [7], the arriving rate of pickup events is pre-
dicted from historic pickups. Based on the prediction, vehicles can be allocated
to an area to cover the pickup need (i.e. #pickups ≤ #vehicles). If the taxi
company uses the intensity �λ� learned from vanilla HP as the expected rate of
pickups to satisfy, about 50% probability that the pickup need can be satisfied.
To plan for a higher probability, more vehicles need to be sent, e.g. for extra
probability Pm = Poisson(x ≤ M |λ) − Poisson(x ≤ λ|λ), extra m = �M − λ�
vehicles need to be sent. However, in Sect. 6, when there is a significant vari-
ance on the triggering effect, sending m vehicles can only satisfy pickup need
with extra probability less than Pm, which will lead to a decision with insufficient
capacity. Using our stochastic triggering kernel, one can obtain extra information
about the distribution of the triggering effect, so the insufficient capacity could
be compensated. The similar issue could happen in other HP-based capacity
planning applications, as long as there is a significant variance on the triggering
kernel.

We propose a HP variant with stochastic triggering kernel (HP-STK), aimed
at quantifying the variance of triggering kernel so as to overcome the problem
mentioned above. Based on Gaussian white noise, we consider two cases for the
variance: homoscedasticity (i.e. constant variance) and heteroscedasticity (i.e.
time-varying variance). Then we propose a tractable inference method to replace
the original maximum likelihood estimation (MLE) and apply the inference of
both cases to the variational auto-encoder (VAE) [11] framework.

To our best knowledge, no work has been done before to model the variance
of triggering kernel in HP. Specifically, our work makes the following contribu-
tions: (1) we propose a new HP variant named HP-STK, in which the variance
of triggering kernel is incorporated to overcome the underestimation problem
in capacity planning; (2) two special cases are considered: homoscedasticity
and heteroscedasticity; (3) the uniform-trigger-kernel-based MLE is proposed
to replace the original MLE and a VAE-based algorithm is used for inference.

2 Related Work

The model proposed in this paper is motivated by the Cox process [2]. The Cox
process, also known as the doubly stochastic Poisson process, is a stochastic
process which is an extension of a Poisson process where the intensity function
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is itself a stochastic process. It has been widely used in many applications, such
as astronomy [9] and neuroscience [3]. A common version of Cox process is the
Gaussian Cox process [15], where the intensity function is modeled as a Gaussian
process. However, the inference is intractable because of non-conjugacy and inte-
gration over infinite-dimensional random function. Different inference algorithms
based on Markov chain Monte Carlo (MCMC) or Laplace approximation have
been proposed in [1,4]. In Cox process, the randomness is added to the intensity,
but in this paper the randomness is on triggering kernel to reduce dimensions.

There are also HP extensions to model the randomness of triggering kernel.
For example, Dassios [5] proposed a stochastic HP, where jumps in the intensity
function are considered to be independent and identically distributed (i.i.d.)
random variables. Lee [12] extended all jumps to a stochastic process and solved
it using stochastic differential equation. Both works focus on stochastic jumps,
but our proposed model considers the whole triggering kernel as a stochastic
process which is more generalized.

Another related direction is VAE [11]. VAE has a similar architecture with
auto-encoder, but makes an assumption about the distribution of latent vari-
ables. VAE is a generative model, which combines ideas from neural network
with statistical inference. It can be used to learn a low dimensional represen-
tation Z of high dimensional data X. It assumes that the data is generated
by a decoder P (X|Z) and the encoder is learning an approximation Q(Z|X)
to the posterior distribution P (Z|X). It uses the variational method for latent
representation learning, which results in a specific loss function. In this paper
we apply the loss of VAE into our model.

3 Proposed Model

3.1 Hawkes Process

A Hawkes process is a stochastic process, whose realization is a sequence of
timestamps {ti} ∈ [0, T ]. Here, ti stands for the time of occurrence for the
i-th event and T is the observation duration for this process. An important
way to characterize a HP is through the definition of a conditional intensity
function that captures the temporal dynamics. The conditional intensity function
is defined as the probability of event occurring in an infinitesimal time interval
[t, t + dt) given the history:

λ(t) = lim
Δt→0

P (event occurring in [t, t + Δt)|Ht)
Δt

(1)

where Ht = {ti|ti < t} are the historical timestamps before time t. Then the
specific form of intensity for HP is:

λ(t) = μ +
∑

ti<t

γ∗(t − ti) (2)
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where μ > 0 is the baseline intensity which is a constant, and γ∗(·) is the
triggering kernel. In most cases, the triggering kernel is assumed to be an expo-
nential decay function. The summation of triggering kernels explains the nature
of self-excitation, which is the occurrence of events in the past will intensify the
intensity of events occurring in the future. Then the log-likelihood function can
be expressed using the above conditional intensity as:

log L =
n∑

i=1

log λ(ti) −
∫ T

0

λ(t)dt (3)

3.2 HP with Stochastic Triggering Kernel

In HP-STK, we target to introduce variance into the triggering kernel of HP. We
define the HP-STK model and see what is the variance of triggering kernel.

Definition 1. HP-STK is a Hawkes process whose triggering kernel after event
ti can be written as a sample drawn from a stochastic process with Δt ∈ R

+ as:

γi(Δt) = γ̄(Δt|ξ) + εi(Δt), where εi(Δt) ∼ P (ε(Δt)|θ) (4)

where γi(Δt) is the triggering kernel after event ti, γ̄(Δt|ξ) is a deterministic
triggering kernel with parameters ξ, εi(Δt) is a noise function for γi(Δt) and
P (·) is a distribution over function with parameters θ.

Naturally, P (ε(Δt)|θ) can be defined as a Gaussian process. Here for simplic-
ity P (ε(Δt)|θ) is defined as an independent multivariate Gaussian distribution
N(ε(Δt)|0, σ2(Δt) · I) (expressed in finite dimensions) where I is the identity
matrix which means there is no covariance. γ̄(Δt|ξ) and σ2(Δt) are both defined
to be in parametric form. In conclusion, we define γ̄(Δt|ξ) = α exp(−βΔt),
σ2(Δt) = σ2

c in homoscedastic case and σ2(Δt) = (ασ exp(−βσΔt))2 in het-
eroscedastic case. Here we define the σ(Δt) to be an exponential decay function
because in many scenarios it would be common to have a high variance just after
a triggering event and have a lower variance afterwards, but in fact σ(Δt) can be
extended to other cases, e.g. linear decreasing variance or periodic variance. It
can be seen that the homoscedasticity is just a special case of heteroscedasticity
by setting: ασ = σc and βσ = 0.

The intensity of HP-STK can be written as:

λ(t) = μ +
∑

ti<t

(α exp(−β(t − ti)) + εi(t − ti)) (5)

To avoid the superposition of εi(t − ti) to explode, εi(Δt) and γ̄(Δt) are both
defined on the support of [0, Tγ ] and 0 afterwards. In the theory of point process
the intensity has to be positive, so λ(t) is restricted to (λ(t))+ (i.e. λ(t) = 0 if
λ(t) < 0). Because the γi(Δt) is subject to Gaussian distribution: see (4), so
the λ(t) is also subject to Gaussian distribution: see (5) and (λ(t))+ is subject
to a truncated Gaussian distribution. In real applications, the triggering kernel
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variance σ2(Δt) is always small compared with the intensity, so the truncated
Gaussian distribution can be seen as a Gaussian distribution approximately.
As we can see later, using Gaussian to describe γi(Δt) introduces computation
convenience to the inference.

3.3 Stability Condition

The stability condition of Hawkes process has been proposed in [10]: the Hawkes
process Pt is stable if and only if

∫ ∞
0

γ∗(·) < 1.
Because γi(·) is subject to Gaussian distribution in our model, the

∫ ∞
0

γi(·)
is also subject to Gaussian distribution:

∫ ∞

0

γi(·) ∼ N(x|
∫ ∞

0

α exp(−βt)dt,

∫ ∞

0

σ2(t)dt) (6)

where Δt is replaced by t and x is the integral value.

Definition 2. HP-STK is probabilistically stable with P (
∫ ∞
0

γi(·) < 1).

For homoscedasticity, in order to avoid the
∫ ∞
0

σ2
cdt to explode, γi(Δt) is defined

on the support of [0, Tγ ]. Given exp(−βTγ) ≈ 0, we have the stability probability:

Phomo =
∫ 1

−∞
N(x|α

β
, σ2

cTγ)dx (7)

For heteroscedasticity, the stability probability is:

Phetero =
∫ 1

−∞
N(x|α

β
,

α2
σ

2βσ
)dx (8)

The probabilistic stability of homoscedastic HP-STK is constrained by Tγ .
Therefore, when Tγ is undetermined, heteroscedastic HP-STK is recommended.

4 Inference

4.1 Inference with Uniform Triggering Kernel

Given a set of observed data, the goal of inference is to evaluate these parameters:
μ, α, β, σc for homoscedastic case, and μ, α, β, ασ, βσ for the heteroscedastic
case. We use MLE to infer parameters where the log-likelihood is:

log L({ti}n
i=1|μ,Θ)

= log
∫

γn

· · ·
∫

γ2

∫

γ1

L({ti}n
i=1|μ, γ1, γ2, · · · , γn)

P (γ1|Θ)P (γ2|Θ) · · · P (γn|Θ)dγ1dγ2 · · · dγn

(9)

where the Θ stands for θ and ξ in (4). However, this log marginal likelihood is
complicated to work out because of multiple integrals. To solve this problem, an
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intuitive way is to assume γ1 = γ2 = · · · = γn = γ (i.e. the uniform triggering
kernel). Then the log-likelihood can be rewritten as:

log L({ti}|μ,Θ) = log
∫

γ

L({ti}|μ, γ) · P (γ|Θ)dγ (10)

It is worth noting that, given a set of observed data, the estimation with the
uniform triggering kernel is equivalent to the original one. This is proved by (9)
and (10), because we get the same log L({ti}) with respect to μ,Θ.

After transforming (9) to (10), we can directly infer the parameters using
Monte Carlo integration. However, we still need to calculate the likelihood which
is not numerically stable. To solve this problem, we propose an inference method
based on VAE.

4.2 Inference with VAE

In fact, our proposed model can be considered as a VAE to some extent. So the
loss function [11] of VAE can be applied to our model for inference. The loss
function of VAE is the negative log-likelihood with a regularizer:

L = −E[log L({ti}|μ, γ(·))] + κ · DKL[P (γ(·)|Θ)‖Q(γ(·))] (11)

where the first term is the expectation of log-likelihood of {ti} given γ(·). The
expectation is taken with respect to the encoder’s distribution over γ(·). This
term encourages the decoder to learn to construct the observed sequence data.
If the decoder’s output does not fit the data well, it will incur a large cost in
the loss function. The second term is a regularizer with a weight parameter κ.
It is the Kullback-Leibler (KL) divergence between the encoder’s distribution
P (γ(·)|Θ)1 and Q(γ(·)). Q(γ(·)) is a benchmark distribution and it describes a
priori about γ(·). This divergence measures how close P (γ(·)|Θ) is to Q(γ(·)).

In the loss function, the first term can be rewritten as − ∫
γ

log L({ti}|μ, γ) ·
P (γ|Θ)dγ. It is an integral over an infinite-dimensional stochastic function and
it has no analytical solution because of non-conjugacy. To solve these problems,
we use discretization and Monte Carlo integration to transform the integral into
an average of log-likelihood. By putting log into the integration, we avoid the
calculation of likelihood by log-likelihood which is more numerically stable. The
Monte Carlo integration will produce a volatile loss function which is not differ-
entiable because of the sampling process, and we can use the reparameterization
trick [6] in VAE to make it differentiable. The reparameterization trick is as
follows: if we have x ∼ N (m,σ2) and then standaridize it to N (0, 1), we could
revert it back to the original distribution by x = m + x′ · σ where x′ ∼ N (0, 1).
Now the sampling process is outside the loss function, so the gradient of loss
function will not be affected by sampling.

1 Customarily, Q(·) is used for encoder’s distribution in VAE, but here to be consistent
with the previous discussion P (·) is used.
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The second term is a KL divergence. In VAE, a popular choice of Q(·) is
N (0, 1) to express the prior knowledge [6]. In our setting, we select Q(γ(Δt)) =
N (0, I) for the homoscedastic case, and Q(γ(Δt)) = N (0, exp(−φ·Δt)·I) for the
heteroscedastic case, where φ is a constant which can be set manually in exper-
iment. Having Q(γ(Δt)) to be a Gaussian distribution also introduces another
benefit. Because the P (γ(·)|Θ) in our model is also assumed to be Gaussian: see
(4), the KL divergence between P (γ(·)|Θ) and Q(γ(Δt)) could be computed in
closed form. The KL divergence between two Gaussian distributions is:

DKL[N (m1,Σ1)‖N (m2,Σ2)] =
1
2
[log |Σ2| − log |Σ1|

− k + Tr{Σ−1
2 Σ1} + (m2 − m1)TΣ−1

2 (m2 − m1)]
(12)

where k is the dimension of Gaussian, Tr{} is the trace of matrix, | · | is the
determinant. Both Gaussian distributions in our model are assumed to be inde-
pendent which means the covariance Σ1 and Σ2 are both diagonal matrices.
This independence assumption improves the computational efficiency further.

After getting the loss function, we can train the model using the generic
gradient descent method to optimize the loss with respect to the parameters
μ, α, β, σc in homoscedastic case or μ, α, β, ασ, βσ in heteroscedastic case.

5 Synthetic Data Experiment

In synthetic data experiments, we prove that the underlying mean triggering
kernel and the corresponding variance parameters can be recovered.

5.1 Homoscedastic Stochastic Triggering Kernel

Based on the thinning algorithm [17], we generate data by setting μ = 10,
γ̄(Δt) = 1 · exp(−2 · Δt), σc = 0.5 and Tγ = 3. We sampled 10 sets of synthetic
data and each of them is a sequence of timestamps in [0, T ] where T = 20, with
a realization of about 400 events.

We use both of the vanilla HP and the homoscedastic HP-STK to recover the
parameters for each set of the synthetic data. For both models, the evaluation
of parameters is the average of 10 results. For vanilla HP, the final estimations
are μ̂ = 11.04, α̂ = 0.88, β̂ = 2.71; for homoscedastic HP-STK, with the con-
figuration of κ = 0.015, Q(γ(Δt)) = N (0, I) and 300 samples from N (0, I) to
perform Monte Carlo integration, the final estimations are μ̂ = 10.98, α̂ = 0.88,
β̂ = 2.51, σ̂c = 0.36. The learned triggering kernel is shown in Fig. 1a. We
can see that the vanilla HP only gives out a deterministic function, while the
homoscedastic version gives out an additional variance band.

5.2 Heteroscedastic Stochastic Triggering Kernel

Similarly, in heteroscedastic case, we set μ = 2, γ̄(Δt) = 1·exp(−2·Δt), σ(Δt) =
0.5 · exp(−2 · Δt) and Tγ = 3. We generate timestamps in [0, T ] where T = 100,
resulting in a realization of about 400 events. 10 synthetic datasets are generated.
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(a) homoscedastic (b) heteroscedastic

Fig. 1. The triggering kernel from vanilla HP and HP-STK (black and red lines over-
lap), the shade region is the γi(Δt)s of 10 sets of synthetic data. (Color figure online)

We use the similar setting for this experiment, except that homoscedastic
HP-STK is replaced by heteroscedastic HP-STK. For vanilla HP, the final esti-
mations are μ̂ = 2.32, α̂ = 1.05, β̂ = 2.60; for heteroscedastic HP-STK, with the
configuration of κ = 0.015, Q(γ(Δt)) = N (0, exp(−4 · Δt) · I) and 300 samples
from N (0, I) for Monte Carlo integration, the final estimations are μ̂ = 2.33,
α̂ = 1.06, β̂ = 2.60, α̂σ = 0.33, β̂σ = 1.52. The learned triggering kernel is shown
in Fig. 1b. The vanilla HP only gives out a deterministic function, while the
heteroscedastic version gives out an additional time-decreasing variance band.

6 Applications

To evaluate the effectiveness of our model, we conduct experiments on two real
datasets, taxi pickup and crime. We discuss the results and show how HP-STK
outperforms vanilla HP in the application of decision on capacity planning.

6.1 Datasets and Experiment Setting

Green Taxi Pickup in New York City: This dataset includes trip records
from all trips completed in green taxis in New York City from January to June
in 2016. In the experiment, the data from January 1st to 15th is used. We
filter out pick-up dates and times for all long-distance trips (>15 miles), since
the long distance trips usually have different patterns with short ones [13]. In
addition, we pre-process the data by adding a small time interval to separate all
the simultaneous records. As a result, we obtain 6223 pickups for 15 days, and
the observed variance is 50.39 given 1 h as time interval. This means the actual
number of pickups in short periods can be very unstable, so we model it with
the homoscedastic HP-STK.

We apply both of the vanilla HP and homoscedastic HP-STK to model the
triggering effect of pickups. We assume the triggering kernels are independent
for different days. The support of γ(Δt) is [0, 3] and the time unit is 1 h.
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The evaluation of parameters is the average of 15 training results. For vanilla
HP, the final estimations are μ̂ = 5.23, α̂ = 0.78, β̂ = 1.09; for homoscedastic
HP-STK, with κ = 0.015, Q(γ(Δt)) = N (0, I) which is consistent with the
synthetic experiment, the final estimations are μ̂ = 5.25, α̂ = 0.78, β̂ = 0.98,
σ̂c = 0.34. The learned γ(·) is shown in Fig. 2a. It can be seen that the mean
γ(·) from homoscedastic version is close to the vanilla result, but it gives out an
additional variance band. The corresponding intensity of January 4th is plotted
in Fig. 3a. The black solid line is the intensity learned from vanilla HP, the gray
band corresponds to the variance band of intensity with ±σλ(t).

(a) Taxi: homoscedasticity (b) Crime: heteroscedasticity

Fig. 2. Trigger kernels learned from two real datasets for vanilla HP and HP-STK.

Theft of Vehicle in Vancouver: The data of crimes in Vancouver comes
from the Vancouver Open Data Catalogue. It is extracted on 2017-07-18 and
it includes all valid felony, misdemeanour and violation crimes from 2003-01-01
to 2017-07-13. We filter out the records of which the crime type is ‘Theft of
Vehicle’ from 2012 to 2016. As a result, we obtain 6320 records for 5 years and
the observed variance is 4.29 given 1 day as the time interval. This is stabler
than taxi pickups, therefore we model it with the heteroscedastic HP-STK.

We apply both the vanilla HP and heteroscedastic HP-STK to model the
triggering effect in crime. We assume the triggering kernels are independent for
different years. The support of γ(Δt) is [0, 3] and the time unit is 1 day.

The evaluation of parameters is the average of 5 training results. For vanilla
HP, the final estimations are μ̂ = 2.80, α̂ = 2.29, β̂ = 12.21; for heteroscedastic
HP-STK, with the configuration of κ = 0.015, Q(γ(Δt)) = N (0, exp(−4 ·Δt) ·I)
which is consistent with the synthetic experiment, the final estimations are μ̂ =
2.95, α̂ = 1.21, β̂ = 8.31, α̂σ = 0.17, β̂σ = 1.25. The learned γ(·) is shown
in Fig. 2b. It can be seen that the mean γ(·) from heteroscedastic version is
close to the vanilla result, but it gives out an additional variance band. The
corresponding intensity of 2016-year crime is plotted in Fig. 3b. The black solid
line is the intensity learned from vanilla HP, the gray band corresponds to the
variance band of intensity with ±σλ(t).
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Fig. 3. (a): MHP1 , MHP2 and MSTK of 4th Jan. in taxi dataset based on vanilla HP
and homoscedastic HP-STK. Blue points are empirically estimated pickup rates in
every 30 min. (b): MHP1 , MHP2 and MSTK of 2016 year crime in Vancouver based on
vanilla HP and heteroscedastic HP-STK. Blue points are empirically estimated crime
rates in each day. (Only 30 days are shown). (Color figure online)

6.2 Use Case for HP-STK

We examine the use case based on the variance of triggering kernel for HP-STK.
It is discussed with the comparison with vanilla HP and applied to both datasets.

Decision for Capacity Planning: In the taxi dataset, the taxi company needs
to decide the number (M(t)) of taxis to meet the pickup need on time t. We
omit t in the following discussion for simplicity. If the company uses intensity
λHP learned from vanilla HP, and send MHP1 = λHP (black line in Fig. 3a)
taxis to satisfy the pickup need, about 50% probability2 that all pickups can
be satisfied. To plan for a higher probability, the planner needs to send more
taxis. So if the variance of Poisson distribution is taken into consideration, we
let MHP2 = λHP +

√
λHP (green line in Fig. 3a), then theoretically extra 29.7%

(Poisson(x < λHP +
√

λHP ) − Poisson(x < λHP ) where x is real pickup need)
probability should be added to satisfy the need, given that the average inten-
sity of 15 days is about λHP = 17 pickups per hour. To empirically estimate
this probability, we compute pickup rates in each 0.5 h (blue points in Fig. 3a).
The probability is defined as the number of blue points under the corresponding
intensity line divided by the total number, which is shown in Table 1. However,
in Table 1, only about 23.2% probability has been added using MHP2 compar-
ing with using MHP1 by averaging the probabilities of 15 days. The difference
between theoretical and empirical results means that using vanilla HP underes-
timates the uncertainty while our method can provide more accurate one.

To demonstrate the superiority of our model, here we also show the MSTK

got from homoscedastic HP-STK. After we learn the variance of triggering ker-
nel σc, we can get the variance of intensity σλ (gray band in Fig. 3a) using
(5). Then we sample {λi

STK}100i=1 from the Gaussian distribution N(λSTK , σ2
λ),

2 Based on the Poisson process, the probability could be larger when intensity is low.
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Table 1. The probability of satisfying pickup need for MHP1 , MHP2 and MSTK of
Jan. 1st to 15th taxi pickup in NYC.

Table 2. The probability of satisfying security need for MHP1 , MHP2 and MSTK of
2012 to 2016 crime in Vancouver.

which are samples larger than the mean. We set the expected rate of pickups as
MSTK = 1

100

∑100
i=1(λ

i
STK +

√
λi

STK) (magenta line in Fig. 3a). We also compute
the probability of satisfying pickup need of MSTK which is shown in Table 1.
It can be seen that about 28.7% probability has been added using MSTK com-
paring with using MHP1 by averaging the probabilities of 15 days. This result is
close to the theoretical result 29.7%, which means HP-STK is more accurate.

Similarly, the capacity planning decision task is also performed in crime
dataset using same definition for MHP1 , MHP2 and MSTK (black, green and
magenta lines in Fig. 3b, respectively). In the dataset, λHP = 4, therefore the-
oretically we should observe 26.05% difference between MHP2 and MHP1 . To
empirically estimate this probability, we compute crime occurrence rates in each
day which are shown as blue points in Fig. 3b. The probability result is shown
in Table 2 which shows that the difference between MHP2 and MHP1 is 27.0%
that is close to the theoretical one. This means the variance of triggering kernel
is quite small, which is consistent with the result in Fig. 2b. In such case, the
vanilla HP is good enough for capacity planning and there is no need to use
HP-STK because the magenta line is very close to the green line (see Fig. 3b).

7 Conclusion

We extended HP with stochastic triggering kernel and considered both the
homoscedastic and heteroscedastic cases. Our proposed model can provide the
variance of triggering kernel, so allow us to overcome the underestimation prob-
lem in capacity planning. Along with the model, we also propose a tractable
inference based on VAE loss function. Results from synthetic data show that the
HP-STK model can recover the underlying mean triggering kernel and the cor-
responding variance. The usage of HP-STK in taxi allocation discloses that the
taxi pickup has a highly stochastic triggering kernel. Vanilla HP will underesti-
mate the expected pickup rate. Without misleading the taxi dispatcher, HP-STK
could provide a more accurate rate. Furthermore, another case in crime with a
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stabler triggering kernel is used to test that HP-STK could disclose the data
stability as expected. There is also freedom to maneuver the stochastic trigger-
ing kernel to adapt to other real-life applications or to invent nonparametric
stochastic triggering kernels.
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