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Abstract
This work addresses a key limitation in current federated learning
approaches, which predominantly focus on homogeneous tasks,
neglecting the task diversity on local devices. We propose a princi-
pled integration of multi-task learning using multi-output Gaussian
processes (MOGP) at the local level and federated learning at the
global level. MOGP handles correlated classification and regression
tasks, offering a Bayesian non-parametric approach that naturally
quantifies uncertainty. The central server aggregates the posteriors
from local devices, updating a global MOGP prior redistributed for
training local models until convergence. Challenges in perform-
ing posterior inference on local devices are addressed through the
Pólya-Gamma augmentation technique and mean-field variational
inference, enhancing computational efficiency and convergence
rate. Experimental results on both synthetic and real data demon-
strate superior predictive performance, OOD detection, uncertainty
calibration and convergence rate, highlighting the method’s po-
tential in diverse applications. Our code is publicly available at
https://github.com/JunliangLv/task_diversity_BFL.

CCS Concepts
• Mathematics of computing→ Bayesian computation; Vari-
ational methods; • Computing methodologies→Multi-task
learning; Distributed algorithms.
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1 Introduction
Over the past few years, artificial intelligence has experienced
tremendous growth. Traditional machine learning methods often
necessitated centralizing datasets for training. However, with the
proliferation of edge devices like smartphones and Internet of
Things (IoT) devices, there is a strong demand for machine learning
models to be trained on dispersed data. Therefore, federated learn-
ing (FL) [60] has emerged as a concept in recent years, aiming to
train models using data scattered across multiple local devices, thus
avoiding large-scale data transfers and enhancing data privacy [63].

While FL has seen considerable advancement, it is known that
most current FL efforts focus on homogeneous tasks on local de-
vices, either exclusively for classification or solely for regression
tasks. However, this contradicts real-world scenarios, where local
devices often gather data for both types of tasks. Taking the health
monitoring application on a smartphone as an example: it collects
various health metrics such as heart rate, step count, and sleep qual-
ity. Suppose the application aims to classify the user’s movement
states, such as stationary or walking, using sensor data like step
count. Simultaneously, it can utilize heart rate and sleep duration
for regression analysis, predicting trends in specific indicators. It is
evident that this example involves both classification and regression
tasks, and they are closely correlated. This implies a need to adopt
multi-task learning (MTL) approaches to simultaneously handle
both types of tasks on the local device.
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Furthermore, numerous existing FL frameworks rely on deter-
ministic methods, suffering from overfitting when data is limited
and providing predictions without uncertainty estimation, restrict-
ing their application in high-risk domains. For example, in high-risk
domains, encountering decisions with high uncertainty indicates a
need for caution, prompting a shift towards conservative strategies
rather than complete reliance on algorithmic outputs. Similarly,
in the context of out-of-distribution (OOD) detection, leveraging
uncertainty helps identify OOD samples as they tend to exhibit
higher uncertainty compared to in-distribution data.

This article aims to integrate multi-task learning at the local level
and federated learning at the global level in a principled probabilistic
manner. Specifically, on each local device, we employ multi-output
Gaussian processes (MOGP) [3] to jointly model multiple correlated
classification and regression tasks. As a Bayesian framework,MOGP
naturally quantifies uncertainty through posterior inference. On
the central server, we aggregate the posteriors uploaded by local
devices to obtain an updated global MOGP prior. This updated
global prior is then redistributed to local devices to train new local
models. This iteration continues until the global convergence.

It is worth noting that performing posterior inference on local
devices presents a challenge due to the non-conjugacy of classifica-
tion likelihood with MOGP prior, requiring approximation methods
like Markov chain Monte Carlo (MCMC) [40] or variational infer-
ence (VI) [6]. While VI is computationally efficient, the standard
methods, which assume a Gaussian variational distribution and
optimize a tractable evidence lower bound (ELBO), often suffer
from slow convergence [57]. To address this challenge, this work
employs the Pólya-Gamma augmentation technique [41], crafting
a mean-field VI with closed-form expressions.

Specifically, we make the following contributions: (1) at the local
level, we extend from single-task tomulti-task settings, empowering
local device to handle correlated classification and regression tasks
concurrently; (2) as a Bayesian approach, our local model not only
provides predictions but also characterizes uncertainty, a crucial fac-
tor in OOD detection and model calibration; (3) by enhancing local
posterior inference using Pólya-Gamma augmentation, we derive a
completely analytical mean-field VI method, significantly boosting
convergence; (4) across synthetic and real datasets, our method
outperforms baselines in predictive performance, and demonstrates
superior OOD detection, uncertainty calibration, and fast conver-
gence. Lastly, we conduct ablation studies to explore the robustness
of our method concerning various components.

2 Related Works
In this section, we discuss pertinent research on FL, Bayesian FL,
and multi-task learning.

2.1 Federated Learning
In FL, collaboration among clients is pivotal for addressing learn-
ing tasks while upholding data privacy. Google introduced the
initial FL algorithm, FedAvg, to safeguard client privacy in dis-
tributed learning [37]. Subsequent advancements encompass a
range of methods to enhance convergence [19, 30, 49], fortify data
privacy [2, 55, 56], and improve communication efficiency [9, 44, 47].
Personalized federated learning (PFL) has gained traction in recent

years, overcoming the suboptimal performance of early FL meth-
ods when confronted with heterogeneous datasets [45]. Recent
methods include local customization [23, 50, 51], meta-learning
techniques [15, 16, 25], and other strategies. Our method can be
considered as a form of the meta-learning approach.

2.2 Bayesian Federated Learning
To address uncertainty estimation and overfitting with limited
data, some studies have proposed Bayesian federated learning
(BFL) [7]. In BFL, incorporating suitable priors onmodel parameters,
as regularization, mitigates overfitting with limited data. Addition-
ally, the posterior equips the model with the capability to capture
uncertainty. Consequently, BFL facilitates more robust and well-
calibrated predictions [31, 39, 54, 64]. Recently, a cohort of BFL
methods based on GPs has emerged [1, 12, 61, 62]. They utilize
GP priors as the shared knowledge, leveraging the nonparametric
nature of GPs to adapt more flexibly to complex data. However, the
existing works seldom consider the coexistence of classification
and regression tasks, a gap that this work seeks to address.

2.3 Multi-task Learning
MTL [8] has extensive applications across various domains, includ-
ing natural language processing [10, 14], computer vision [32, 34],
recommendation systems [17, 28], and more. Both MTL and FL
involve knowledge transfer, but their focal points differ. MTL em-
phasizes leveraging correlations among multiple tasks [46, 63],
while FL rigorously maintains client data privacy. Several works
have adapted MTL methods to the FL domain while ensuring client
data privacy [11, 13, 29, 36, 48]. This work diverges from the exist-
ing works by employing a different emphasis. We adopt an MTL
approach on clients, jointly modeling classification and regression
tasks to facilitate knowledge transfer among different task types.

3 Preliminary
In this section, we show the basic concepts of GP regression and
classification, MOGP, and Pólya-Gamma augmentation.

3.1 Gaussian Process Regression and
Classification

GP regression is well-known for its flexibility and analytical infer-
ence. Specifically, the GP regression is formulated as:

𝑦 (x) | 𝑓 (x) ∼ N (𝑓 (x), 𝜎2), 𝑓 (x) ∼ GP(𝑚(x), 𝑘 (x, x′)),

where the output 𝑦 (x) is assumed to be obtained by an additive
Gaussian noise, 𝜎2 is the noise variance treated as a hyperparam-
eter;𝑚(x) is the GP mean function and 𝑘 (x, x′) is the GP kernel
measuring data similarity. For GP regression, a notable advantage is
analytical inference of posterior 𝑓 (·) due to the Gaussian likelihood
being conjugated to the GP prior. Moreover, if we aim to learn
kernel hyperparameters from data, we can maximize the marginal
likelihood which also possesses an analytical expression [43].

GP classification is more challenging. Here, we illustrate with
the example of binary classification:

𝑦 (x) | 𝑓 (x) ∼ B(𝑠 (𝑓 (x))), 𝑓 (x) ∼ GP(𝑚(x), 𝑘 (x, x′)),
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where B denotes the Bernoulli distribution (categorical distribution
formulti-class classification), 𝑠 (·) defines a link function:R→ (0, 1)
whose common choices include the cumulative distribution func-
tion of the standard Gaussian distribution (probit regression) and
the sigmoid function (logistic regression). The primary challenge
in GP classification lies in inference. Because the likelihood is non-
conjugate to the GP prior, the posterior of the classification function
𝑓 (·) lacks an analytical solution. Normally, we resort to approxi-
mate inference such as MCMC, VI, and others. Additionally, the
marginal likelihood is also intractable, making hyperparameter
optimization difficult.

3.2 Multi-output Gaussian Processes
MOGP [3] extends GP to model multiple correlated output func-
tions, providing a Bayesian nonparametric framework for multi-
task learning. To define an MOGP, we need to establish a cross-
covariance function representing the correlation among multiple
outputs. Among various methods, we use the widely used linear
model of coregionalization [26]. Specifically, we assume each out-
put function is a linear combination of 𝐵 basis functions drawn
from 𝐵 independent GP priors:

𝑓𝑖 (x) =
𝐵∑︁

𝑏=1
𝑤𝑖,𝑏𝑔𝑏 (x), 𝑔𝑏 (x) ∼ GP(𝑚𝑏 (x), 𝑘𝑏 (x, x′)),

where 𝑓𝑖 (·) is the 𝑖-th output function, 𝑔𝑏 (·) is the 𝑏-th basis func-
tion, 𝑤𝑖,𝑏 ∈ R is the mixing weight. As usual, 𝑚𝑏 (·) is set to 0,
𝑘𝑏 (·, ·) is the kernel of the 𝑏-th GP. It is easy to see that the mean
of 𝑓𝑖 (·) is 0, while the cross-covariance between two outputs is
𝑘𝑓𝑖 ,𝑓𝑗 (x, x′) = cov[𝑓𝑖 (x), 𝑓𝑗 (x′)] =

∑𝐵
𝑏=1𝑤𝑖,𝑏𝑤 𝑗,𝑏𝑘𝑏 (x, x′). If we

consider finite inputs, defining f𝑖 as the function-value vector on
the 𝑖-th task inputs, we obtain the discrete MOGP: f ∼ N(0,K),
where f is the function-value vector of all tasks, K is a block matrix
with each block denoted by Kf𝑖 ,f𝑗 where each entry is 𝑘𝑓𝑖 ,𝑓𝑗 (·, ·).

3.3 Pólya-Gamma Augmentation
Conducting effective posterior inference for GP classification has
been a prominent focus within the Bayesian domain. Apart from
directly employing MCMC or VI, several studies have proposed
data augmentation methods that involve augmenting auxiliary la-
tent variables into non-conjugate models, thereby transforming
non-conjugate problems into conditional conjugate ones, and accel-
erating convergence compared to directly using MCMC or VI [57].
Here, we focus on the Pólya-Gamma augmentation for Bayesian
logistic regression [41]. The core of this method is the represen-
tation of the logistic likelihood as a mixture of Gaussians w.r.t. a
Pólya-Gamma distribution. The definition of the Pólya-Gamma
distribution is provided in [41], denoted as 𝑝PG (𝜔 | 𝑏, 𝑐), where
𝜔 ∈ R+ with parameters 𝑏 > 0 and 𝑐 ∈ R. This work only requires
its expectation E[𝜔] = 𝑏

2𝑐 tanh(
𝑐
2 ).

4 Methodology
We delve into a personalized BFL model based on MOGP, with
an overview outlined in Figure 1. In a distributed system com-
prising a single server andZ clients, where each client manages
multiple correlated regression and classification tasks. For conve-
nience, we assume an identical dataset size across all clients. On

each client, we assume there are 𝑇𝑟 regression tasks with data
D𝑟 = {(x𝑟

𝑖,𝑛
, 𝑦𝑟

𝑖,𝑛
)𝑁

𝑟
𝑖

𝑛=1}
𝑇𝑟
𝑖=1 and 𝑇𝑐 classification tasks with data

D𝑐 = {(x𝑐
𝑖,𝑛
, 𝑦𝑐

𝑖,𝑛
)𝑁

𝑐
𝑖

𝑛=1}
𝑇𝑐
𝑖=1. x ∈ X ⊂ R𝐷 represents the 𝐷-dim input.

In regression, the output 𝑦 ∈ R, while in classification 𝑦 ∈ {−1, 1}1.

4.1 Client Level
We present a MOGP-based multi-task learning model deployed on
each client and detail optimization of the posterior distributions of
latent functions.

4.1.1 MOGP Model. The correlation between classification and
regression tasks is characterized by the MOGP prior and can be
utilized to transfer knowledge, especially in scenarios with limited
data [38]. Therefore, we obtain the Bayesian multi-task learning
model based on MOGP on each client:

y𝑟 | {𝑓 𝑟𝑖 }
𝑇𝑟
𝑖=1 ∼

𝑇𝑟∏
𝑖=1

𝑁 𝑟
𝑖∏

𝑛=1
N(𝑓 𝑟𝑖,𝑛, 𝜎

2
𝑖 ), (1a)

y𝑐 | {𝑓 𝑐𝑖 }
𝑇𝑐
𝑖=1 ∼

𝑇𝑐∏
𝑖=1

𝑁 𝑐
𝑖∏

𝑛=1
B(𝑠 (𝑦𝑐𝑖,𝑛 𝑓

𝑐
𝑖,𝑛)), (1b)

𝑓1, . . . , 𝑓𝑇 ∼ MOGP(0,W, 𝑘1, . . . , 𝑘𝐵), (1c)

where Equation (1a) is the regression likelihood, Equation (1b) is
the classification likelihood, and Equation (1c) is the MOGP prior;
𝑓 𝑟
𝑖
and 𝑓 𝑐

𝑖
refer to the respective 𝑖-th output function for the 𝑇𝑟 re-

gression and 𝑇𝑐 classification tasks, 𝑓1, . . . , 𝑓𝑇 represent organizing
all regression and classification functions together, thus𝑇 = 𝑇𝑟 +𝑇𝑐 ;
𝑓 ·
𝑖,𝑛

= 𝑓 ·
𝑖
(x·

𝑖,𝑛
), y𝑟 denotes all regression targets, y𝑐 denotes all

classification labels, W is the matrix of all mixing weights 𝑤𝑖,𝑏 ,
and 𝑘1, . . . , 𝑘𝐵 correspond to the kernels of 𝐵 basis functions. It
is worth noting that we use logistic regression for classification
tasks, meaning that the link function 𝑠 (·) in Equation (1b) is sig-
moid. This choice facilitates the use of Pólya-Gamma augmentation,
simplifying the inference process afterward.

4.1.2 Posterior of Latent Functions. Given the model provided in
Equation (1), the remaining task is to infer the posterior of each
output function. For inference, as discussed in Section 3.1, the
likelihood of classification tasks is not conjugate to the prior, re-
sulting in non-analytical posteriors for 𝑓1, . . . , 𝑓𝑇 . To address the
non-conjugacy issue, many existing works employed Gaussian vari-
ational inference [21, 24]. This method assumes the variational
distribution to be Gaussian, making the ELBO tractable. However,
this method has drawbacks. On the one hand, it relies on parametric
assumptions for the variational distribution, leading to increased
approximation errors, especially when the true posterior deviates
from Gaussian. On the other hand, due to the need to compute the
expected log-likelihood in ELBO, which often requires Monte Carlo
approximation, it typically exhibits low computational efficiency.

To address the above issue, we adapt the Pólya-Gamma aug-
mentation for MOGP to the federated setting. We augment the
MOGP model with Pólya-Gamma random variables 𝝎 for all clas-
sification tasks, one for each sample. Consequently, the original

1Here we focus on binary classification, while the extension to the multi-class case is
discussed in Appendix E.
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Server

Client 1

𝑝(𝜔, 𝑓)

𝑞(𝜔, 𝑓)

Mean-field VI

𝐦𝐚𝐱
𝒑(𝒇)

𝟏

𝒁
෍

𝒛=𝟏

𝒁

𝑬𝑳𝑩𝑶𝒛(𝒑(𝒇))

Bi-level optimization

𝑞1 𝜔 ,
𝑞2(𝑓1, … , 𝑓𝑇)

𝚯 = MOGP 𝟎, 𝐖, 𝑘𝜙1,𝜽1
, … , 𝑘𝜙𝐵,𝜽𝐵

 

Client 2 Client Z

…
reg 1 reg 𝑇𝑟…

cla 1 cla 𝑇𝑐…

reg 1 reg 𝑇𝑟…

cla 1 cla 𝑇𝑐…

reg 1 reg 𝑇𝑟…

cla 1 cla 𝑇𝑐…

…

𝑝(𝜔, 𝑓) 𝑞(𝜔, 𝑓)
𝑝(𝜔, 𝑓)

𝑞(𝜔, 𝑓)

𝑝1 𝜔 ,
𝑝2(𝑓1, … , 𝑓𝑇)

Figure 1: The overview of our model pFed-Mul. Left: System diagram. The central server aggregates the posteriors from local
devices, updating a global MOGP prior redistributed for training local models. Right: Bi-level optimization. The subfigure
illustrates an iterative application of mean-field VI at the local level and hyperparameter tuning at the global level.

non-conjugate model 𝑝 (y𝑟 , y𝑐 , 𝑓1, . . . , 𝑓𝑇 ) is augmented to be a con-
ditionally conjugate model 𝑝 (y𝑟 , y𝑐 ,𝝎, 𝑓1, . . . , 𝑓𝑇 ) allowing us to
derive an analytical mean-field VI method. Following the common
practice of mean-field VI, we approximate the true posterior in
a factorized manner: 𝑝 (𝝎, 𝑓1, . . . , 𝑓𝑇 | y𝑟 , y𝑐 ) ≈ 𝑞(𝝎, 𝑓1, . . . , 𝑓𝑇 ) =
𝑞1 (𝝎)𝑞2 (𝑓1, . . . , 𝑓𝑇 ). The optimal variational distribution is obtained
by minimizing the Kullback-Leibler (KL) divergence between the
factorized variational distribution and the true posterior, which is
equivalent to the following optimization of ELBO:

max
𝑞 (𝝎,𝑓 )

{
E𝑞 (𝝎,𝑓 ) [log 𝑝 (y𝑟 , y𝑐 | 𝝎, {𝑓 𝑟𝑖 }

𝑇𝑟
𝑖=1), {𝑓

𝑐
𝑖 }

𝑇𝑐
𝑖=1)]

− KL(𝑞(𝝎, 𝑓 )∥𝑝 (𝝎, 𝑓 ))
}
.

(2)

where 𝑝 (𝜔, 𝑓 ) is the prior distribution distributed from server
and fixed during local update. Specifically, the prior distribution
is assumed as 𝑝 (𝜔, 𝑓 ) = 𝑝 (𝜔)𝑝 (𝑓 ) where 𝑝 (𝜔) = 𝑝PG (1, 0) and
𝑝 (𝑓 ) =MOGP(0,W, 𝑘1, · · · , 𝑘𝐵). Under assumption of factorized
variational distribution, we obtain the following local updates:

𝑞1 (𝝎) =
𝑇𝑐∏
𝑖=1

𝑁 𝑐
𝑖∏

𝑛=1
𝑝PG (𝜔𝑖,𝑛 | 1, 𝑓 𝑐𝑖,𝑛), (3a)

𝑞2 (f) = N(m,Σ), (3b)

where 𝑓 𝑐
𝑖,𝑛

=

√︃
E[𝑓 𝑐2

𝑖,𝑛
], Σ = (H + K−1)−1, m = ΣHv,with H =

diag(D𝑟
· ,D𝑐
· ), v = [y𝑟· , 12D𝑐

·
−1y𝑐· ]⊤, and D𝑟

𝑖
= diag(1/𝜎2

𝑖
), D𝑐

𝑖
=

diag(E[𝝎𝑖 ]). The detailed derivation of Pólya-Gamma augmenta-
tion and mean-field VI is provided in Appendices A and B.

After obtaining the posterior distribution of f , we can calculate
the analytical expression for the predictive distribution at any point:

𝑞(𝑓𝑖 (𝑥)) =
∫

𝑝 (𝑓𝑖 (𝑥) | f𝑖 )𝑞2 (f𝑖 )𝑑f𝑖 = N(𝜇, 𝜎2),

𝜇 = k⊤x·
𝑖
𝑥K−1x·

𝑖
x·
𝑖
mx·

𝑖
,

𝜎2 = 𝑘𝑥𝑥 − k⊤x·
𝑖
𝑥K−1x·

𝑖
x·
𝑖
kx·

𝑖
𝑥 + k⊤x·

𝑖
𝑥K−1x·

𝑖
x·
𝑖
Σx·

𝑖
K−1x·

𝑖
x·
𝑖
kx𝑖𝑥 .

(4)

4.2 Server Level
The server maintains a global MOGP prior for the entire system,
aggregates local posteriors to update the global MOGP prior, and

distributes the updated global prior back to clients. The intuition
behind our method is similar to that of pFedBayes [64]. In practice,
we often cannot directly assume a good prior suitable for the current
data. As the communication rounds progress, the global MOGP
becomes increasingly compatible with the data from all clients. This
implies that we have found a relatively good prior. pFedBayes is a
parametric method that assumes Gaussian variational distributions
for each parameter, an assumption that may not always hold true.
In contrast, our proposed method is non-parametric and imposes
no assumptions on the form of the posterior distribution, with the
only restriction being the independence between 𝑓 and 𝝎.

Specifically, at the server level, we aggregate the mean-field VI
posteriors uploaded from clients and update the global MOGP prior
by maximizing the averaged ELBO:

max
𝑝 (𝑓 )

1
Z

Z∑︁
𝑧=1

ELBO𝑧 (𝑝 (𝑓 )), (5)

where ELBO𝑧 represents the ELBO of the 𝑧-th client, which depends
on the variational distribution 𝑞 and prior 𝑝 . Since 𝑞 is uploaded
by the client and fixed, the ELBO is solely a function of 𝑝 . Thanks
to the Pólya-Gamma augmentation, Equation (5) has an analytical
solution, thus we can optimize the parameters of the prior, i.e., the
kernel hyperparameters {𝝓𝑏 }𝐵𝑏=1 pertain to B basis functions, the
mixing weight W, and the regression noise variance {𝜎2

𝑖
}𝑇𝑟
𝑖=1. The

detailed derivation of Equation (5) is provided in Appendix D.
For new incoming clients, based on the global MOGP served as

a shared prior, the posterior of the classification and regression
functions is further inferred with incorporation of their local data,
which ensures personalization at the client level.

4.3 Deep Kernel and Inducing Points
To further enhance the expressive capacity of MOGP, a deep ker-
nel [58] is utilized in this study. The deep kernel involves a neural
network 𝜂 (·) with parameters 𝜽 that transforms input data 𝑥 into
a latent representation 𝜂𝜽 (𝑥). Subsequently, this representation is
fed into a traditional kernel, thereby generating a new kernel:

𝑘𝝓,𝜽 (𝑥1, 𝑥2) = 𝑘̃𝝓 (𝜂𝜽 (𝑥1), 𝜂𝜽 (𝑥2)),

where 𝑘̃𝝓 (·, ·) is the base kernel, e.g., the radial basis function (RBF)
kernel or others. One advantage of the deep kernel is its ability
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to learn a flexible input transformation metric in a data-driven
manner, instead of relying directly on Euclidean distance based
metrics that might not be suitable. For MOGP, 𝑘1, . . . , 𝑘𝐵 in Equa-
tion (1c) are modeled by deep kernels. Consequently, our model
hyperparameters of prior 𝚯 include the kernel hyperparameters
{𝝓𝑏 , 𝜽𝑏 }𝐵𝑏=1, the mixing weight W, and the regression noise vari-
ance {𝜎2

𝑖
}𝑇𝑟
𝑖=1. These hyperparameters are updated by maximizing

averaged ELBO uploaded from each clients without alteration of
the analytical solution in Equation (5).

MOGP inherits GP’s notorious cubic computational complex-
ity w.r.t. the number of samples. The complexity of 𝑂 (𝑁 3) be-
comes intolerable as the sample size 𝑁 per client increases. To
enhance the computational efficiency, we employ the inducing
points method [53]. We assume that these inducing inputs on each
client are uniformly sampled from local data and not uploaded
to the server for aggregation, which upholds local privacy. After
introducing𝑀 inducing points, the computational complexity de-
creases to 𝑂 (𝑁𝑀2) (𝑀 ≪ 𝑁 ), which is linear w.r.t. the number of
samples on each client. The detailed derivation of mean-field VI
with inducing points is provided in Appendix C.

Algorithm 1 pFed-Mul: Server

Input: server iteration T𝑠 , client sizeZ, sample size S and initial
global hyperparameters 𝚯(𝑔) ,
for 𝑡𝑠 = 0 to T𝑠 − 1 do

S𝑡𝑠 ← Sample randomly the subset of clients with size S
for each client 𝑧 in S𝑡𝑠 do
𝚯
(𝑙 )
𝑧 ← Sent global hyperparameters 𝚯(𝑔) to client 𝑧,

𝑞𝑧,1 (𝝎), 𝑞𝑧,2 (f) ← Update local posteriors based on specific
client data by Algorithm 2,

end for
𝚯
(𝑔) ← Optimize global MOGP prior according to Equa-

tion (5).
end for

Algorithm 2 pFed-Mul: Client

Input: client iteration T𝑐 , initial local hyperparameters 𝚯(𝑙 )𝑧 for
client 𝑧,
for 𝑡𝑐 = 0 to T𝑐 − 1 do
𝑞1 (𝝎) ← Update variational distribution of Pólya-Gamma
variables by Equation (3a),
𝑞2 (f) ← Update variational distribution of latent functions by
Equation (3b),

end for
𝑞(𝑓 (𝑥)) ← Compute the predictive distribution of test points
according to Equation (4),

4.4 Algorithm
In summary, at the client level, all clients receive the same global
prior distributed by server, alternately update variational distri-
butions 𝑞(𝝎) and 𝑞(𝑓 ) via Equation (3) to approximate posterior
distributions based on the local data. At the server level, variational

distributions 𝑞(𝝎) and 𝑞(𝑓 ) are aggregated and the averaged ELBO
is optimized to update the glocal MOGP prior via Equation (5).
We term our method pFed-Mul whose pseudocode is provided in
Algorithms 1 and 2.

5 Experiments
In this section, we utilize a synthetic dataset and two real-world
datasets to showcase the performance of pFed-Mul in terms of
accuracy, uncertainty estimation, and convergence. We did all ex-
periments in this paper using servers with two GPUs (NVIDIA
TITAN V with 12GB memory), two CPUs (each with 8 cores, In-
tel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz), and 251GB memory.

5.1 Experimental Setup
5.1.1 Datasets. We consider three datasets, including one synthetic
dataset and two image datasets.

Synthetic Data: we assume that there exists 5 clients and each
has one regression task and one classification task. The regression
function 𝑓𝑟 and the classification function 𝑓𝑐 are assumed to be
sampled from a MOGP on the domain [0, 100] with two kernels:
𝑓𝑟 , 𝑓𝑐 ∼ MOGP(0,W, 𝑘1, 𝑘2). We select the RBF kernel 𝑘 (𝑥1, 𝑥2) =
𝜙0 exp(−𝜙1

2 ∥𝑥1 − 𝑥2∥
2
2). The regression function 𝑓𝑟 is used in Equa-

tion (1a) with a fixed noise variance 𝜎2 to sample the regression
targets y𝑟 . The classification function 𝑓𝑐 is used in Equation (1b) to
sample the classification labels y𝑐 . We simulate the synthetic data,
where hyperparameters are 𝜎2 = 0.1, W = [[0.6, 0.4], [0.4, 0.6]],
𝜙
(1)
0 = 1, 𝜙 (2)0 = 2, 𝜙 (1)1 = 0.02, 𝜙 (2)1 = 0.01.
CelebA: this dataset comprises an extensive collection of over

two million face images of celebrities, each accompanied by forty
attribute annotations. The dataset exhibits a diverse range of images
featuring significant variations in poses and background settings.
Each image is associated with regression targets, such as the posi-
tion of eyes, mouth, and classification labels such as the presence
of eyeglasses, hair color, and smiling expressions. For more com-
prehensive details, readers are encouraged to refer to [33]. In our
study, we specifically select the abscissa of the right side of the
mouth as regression labels and whether or not the subject is smil-
ing as classification labels. Given the close relationship between
the position of the mouth corner and smiling, these two types of
tasks have the potential to mutually transfer knowledge.

Dogcat: this dataset includes 20, 000 genuine images of dogs
and cats and is widely employed for binary classification tasks
in computer vision. The images in the dataset showcase various
breeds of dogs and cats, captured in different poses, backgrounds,
and lighting conditions. The primary objective of the dataset is to
identify whether the images contain a dog or a cat, without the
inclusion of regression labels. To create new regression labels, we
introduce zero-mean Gaussian noise with a variance of 0.5 into the
original classification labels. As a result, regression labels exhibit
bi-modal distribution. Specifically, for dog images, the regression
targets are centered around 1, while for cat images, they are centered
around −1. It is evident that the classification labels and regression
targets are closely related.

5.1.2 Baselines. We compare our pFed-Mul with competitive FL
methods, which can be categorized into two groups: (1) Bayesian
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Table 1: The mean square error (MSE) for regression tasks and prediction accuracy (ACC) for classification tasks for all models.
The experiments are conducted for two datasets, CelebA and Dogcat, under three few-shot scenarios, 10-shot 20-client, 20-shot
15-client, and 50-shot 10-client. FedPAC, pFedGP and pFedVEM are originally designed to process only the classification tasks,
hence their results for regression tasks are not reported. The champion is highlighted in bold, runner-up with underline.
✗indicates the model cannot handle this type of tasks.

CelebA Dogcat
10-shot 20-client 20-shot 15-client 50-shot 10-client 10-shot 20-client 20-shot 15-client 50-shot 10-client

MSE(↓) ACC%(↑) MSE(↓) ACC%(↑) MSE(↓) ACC%(↑) MSE(↓) ACC%(↑) MSE(↓) ACC%(↑) MSE(↓) ACC%(↑)
FedAvg 0.672 82.50 0.514 86.33 0.394 89.59 0.667 94.70 0.576 94.63 0.515 97.13
FedPer 0.369 79.04 0.328 81.37 0.261 86.68 0.731 95.40 0.682 96.92 0.512 97.13
Scaffold 0.774 77.36 0.649 79.32 0.545 85.12 0.720 94.41 0.667 96.77 0.541 97.43
pFedMe 0.792 78.04 0.657 79.84 0.552 85.44 0.751 94.60 0.673 96.82 0.543 97.13
FedPAC ✗ 77.81 ✗ 79.17 ✗ 81.60 ✗ 96.72 ✗ 97.51 ✗ 97.96

pfedGP ✗ 76.96 ✗ 87.95 ✗ 89.92 ✗ 92.67 ✗ 97.41 ✗ 98.17
pFedVEM ✗ 78.91 ✗ 80.47 ✗ 84.12 ✗ 95.03 ✗ 95.55 ✗ 97.32

pFed-St 0.690 83.80 0.321 88.31 0.221 90.28 0.799 96.83 0.570 96.92 0.525 97.82
pFed-Mul 0.488 86.36 0.476 88.47 0.301 90.76 0.512 96.88 0.422 97.46 0.398 98.22

FL methods, pFedGP [1] and pFedVEM [65]; (2) frequentist FL
methods, FedAvg [37], FedPer [5], Scaffold [27], pFedMe [50] and
FedPAC [59]. As the existing methods are designed for single task,
we implement them separately for each type of task and present the
respective outcomes. Moreover, we introduce an additional single-
task version of pFed-Mul, denoted as pFed-St, which is exclusively
designed to handle a single type of tasks.

5.1.3 Training Protocol. For the synthetic dataset, at the server
level, we assume a global MOGP prior with two RBF kernels with-
out deep architecture and distribute it to each client. At the client
level, posterior distributions are updated via mean-field VI and sent
back to the server for optimizing the averaged ELBO w.r.t. hyper-
parameters W, 𝝓, and 𝜎2. We initialize all hyperparameters as the
ground truth. The number of global communication rounds, mean-
field iterations and local updates are set to 20, 2 and 2, respectively.

Similarly, for the real-world datasets, we assume that each client
has one regression task and one classification task. The training
data are partitioned in a non-overlapping manner and distributed
to individual clients. It is worth noting that this setup is designed
for computational convenience, but our method can adapt to sce-
narios involving multiple tasks (more than two) per client and
task heterogeneity among clients. A MOGP prior with two deep
kernels is employed where RBF serves as the base kernel. The
deep architecture 𝜂𝜽 (·) in the deep kernel is implemented using
ResNet-18 [20]. The initial hyperparameters are set as follows,
𝜙
(1)
0 = 𝜙

(2)
0 = 1, 𝜙 (1)1 = 𝜙

(2)
1 = 0.01, 𝜎2 = 0.1, and W is tuned

with fixed other hyperparameters. The number of global communi-
cation rounds, mean-field iterations and local updates are set to 70,
2 and 2, respectively. To demonstrate the advantage of our model,
all real-world data experiments are conducted in few-shot settings
where each client possesses only limited data.

Furthermore, we have the option to update global MOGP prior
by optimizing summation of ELBOs from a selection of clients
according to Equation (5). Alternatively, we can update certain
hyperparameters by Equation (5), while retaining others that are
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Figure 2: The estimated posterior of latent functions from
pFed-Mul and pFed-St on one client. pFed-Mul, achieves a
better fit, especially for classification. Compared with pFed-
St, pFed-Mul enables the transfer of knowledge from other
task types, effectively reducing uncertainty, i.e. posterior
variance (orange areas).

optimized by client specific ELBOs. This strategy is designed to
improve the level of personalization for the clients. Specifically, we
update all hyperparamters W, 𝝓, 𝜎2 of global prior for synthetic
dataset via Equation (5), while solely backbone 𝜽 for real image
datasets with others optimized locally.

5.2 Performance of Prediction
5.2.1 Synthetic Data. We conduct a visual analysis to compare the
estimated posterior of latent functions from pFed-Mul with that
from pFed-St on one client in Figure 2.
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Figure 3: Reliability diagrams for all methods. We plot the perfect calibration as blue diagonals, and practical result as orange
bars. The disparity between the top of orange bars and blue line represents the degree of calibration, with the expected
calibration error (ECE) calculated for comparison and placed in the top-left corner of diagrams. Our proposed method, pFed-
Mul, demonstrates best calibration performance, ranking first in terms of ECE.

As shown in Figure 2a, the results indicate that our proposed
method successfully recovers the ground-truth latent functions. Fur-
thermore, by comparing pFed-Mul to pFed-St (Figure 2b) that handle
only one type of tasks, we summarize key findings as follows. (1)
We observe that pFed-Mul improves the fitting of latent functions,
especially for the classification functions. The more significant im-
provement for the classification functions can be attributed to the
fact that the target values of regression functions exhibit greater
volatility, making them relatively easier to estimate. Conversely, the
target values of classification functions, passed through a sigmoid
function, are compressed within the range of [0, 1], thereby making
their estimation more challenging. (2) For pFed-St, a smaller data
size results in greater uncertainty in parameter estimation (poste-
rior variance), while pFed-Mul facilitates knowledge transfer across
different task types, thereby reducing such uncertainty. These out-
comes show the necessity of knowledge transfer among diverse
task types, particularly in few-shot scenarios.

5.2.2 Real Data. We conduct experiments on CelebA and Dogcat,
in three different settings: 10-shot individually among 20 clients,
20-shot individually among 15 clients, and 50-shot individually
among 10 clients. The evaluation metrics including mean square
error (MSE) for regression tasks and prediction accuracy (ACC) for
classification tasks are computed for all methods.

The results, summarized in Table 1, show that, (1) pFed-Mul
consistently outperforms existing methods across almost all sce-
narios. This observation showcases remarkable adaptability of our
proposed method from synthetic datasets to intricate real datasets.
In terms of evaluation metrics, the most significant improvements
observed in regression and classification tasks amount to 0.155 and
3.86% respectively. (2) In comparison to the single-task baseline

models, the utilization of the multi-task framework demonstrates
an increase of accuracy in both regression and classification tasks,
highlighting the advantage of multi-task learning, particularly with
limited data. This success can be attributed to two aspects. Firstly,
incorporating more tasks enables the utilization of additional data,
mitigating local overfitting and enhancing global robustness. Sec-
ondly, leveraging prior knowledge among tasks achieves better
prior distribution and enhances convergence efficiency.

5.3 Performance of Uncertainty Estimation
We illustrate that our method can qualify uncertainty and achieve
superior performance to previous baselines in terms of model cali-
bration and OOD detection. These evaluations are conducted in a
setting of 50-shot individually among 10 clients.

5.3.1 Model Calibration. We assess uncertainty by calibrating the
binary classification tasks for CelebA. The reliability diagrams, as
depicted in Figure 3, showcase the disparity between the perfect
calibration (blue diagonals) and the model’s calibration (orange
bars). To quantitatively compare the calibration, we calculate the
expected calibration error (ECE), which measures weighted average
between empirical accuracy and model’s confidence as suggested
in [18]. The results indicate that pFed-Mul demonstrates calibration
performance superior to the baseline models. Specifically, pFed-Mul
ranks first in terms of ECE, FedPer exhibits runner-up performance,
and pFedVEM performs worst among all baselines.

5.3.2 OOD Detection. The uncertainty of prediction provided by
the Bayesian framework is crucial for detecting OOD samples. To
demonstrate this, we select a series of samples from CelebA and
Dogcat, randomly mask two of them, and compute the predictive
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(a) CelebA

(b) Dogcat

Figure 4: OOD detection for CelebA and Dogcat. The predic-
tive mean and variance of latent functions are depicted by
blue lines and red areas beneath each image respectively. Po-
sitions where the image is masked as an OOD sample are
denoted by black stars. A greater variance (wider area) is ob-
served for OOD samples.

variance in classification tasks. The results are depicted in Figure 4.
It is evident that the masked images demonstrate a larger semantic
shift compared to in-distribution images. Therefore, we observe a
greater predictive variance (depicted as red areas) under them. This
visualization highlights the robustness of our method: pFed-Mul
not only provides predictions but also outputs the uncertainty of
predictions. When the uncertainty is large, it indicates that the
model is not confident in the predicted results.

5.4 Convergence Rate
We conduct a comparison between pFed-Mul and other baselines
about convergence rate. For all models, in each communication
round, we assume that the local parameters/variational distribu-
tions are updated 2 times before being uploaded to the server in a
setting of 50-shot individually among 10 clients. The convergence
curve of test accuracy for classification tasks within the initial 10
communication rounds is depicted in Figure 5.

In Figure 5a, pFed-Mul consistently converges to the best test
accuracy plateau after 10 global rounds of communication, with a
remarkable convergence rate. Meanwhile, in Figure 5b, pFed-Mul
not only outperforms other methods in the initial rounds, showing
a substantial lead over the runner-up, pFedGP, but also maintains
stable performance comparable to other approaches. The supe-
rior convergence rate of pFed-Mul stems from our adoption of
Pólya-Gamma augmentation for classification tasks. As proven in
[22], employing mean-field VI for a conditionally conjugate model
is equivalent to optimizing the ELBO using natural gradient de-
scent [4] with step size of 1. This second-order optimization method
exhibits an improved convergence rate compared to traditional first-
order optimization methods.

Beyond the convergence rate, the test accuracy convergence
curve of pFed-Mul exhibits a stable monotonic increase without sig-
nificant fluctuations, indicating remarkable stability. Both conver-
gence rate and stability, hold paramount importance for a model’s
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Figure 5: Convergence rate of all models on both datasets.
pFed-Mul consistently converges to a comparable test accu-
racy plateau with a remarkable convergence rate.

adaptability in real-world scenarios, emphasizing training efficiency,
low latency, and remarkable performance.

5.5 Ablation Studies
We conduct ablation studies to assess various model components
in the setting of 50-shot individually among 10 clients, enhancing
our comprehension of the model’s behavior.

Aggregated Hyperparameters. In the implementation, we can op-
timize only specific hyperparameters by Equation (5), leaving the
rest optimized by local ELBOs, thereby enhancing personalization
for the clients. To investigate this, we compare several versions
of pFed-Mul: pFed-Mul-N which optimizes the parameters of the
neural network in the deep kernel 𝜽 on server (the one we use
in Section 5.2); pFed-Mul-K which optimizes all kernel hyperpa-
rameters 𝝓, 𝜽 on server; pFed-Mul-W which optimizes all kernel
hyperparameters and mixing weights 𝝓, 𝜽 ,W on server; pFed-Mul-
A which optimizes all hyperparameters 𝝓, 𝜽 ,W, 𝜎2 on server. The
results are shown in Table 2. We can see that pFed-Mul-N strikes
a balance between local personalization and global generalization,
outperforming other versions. pFed-Mul-A performs unsatisfying,
underscoring the necessity of personalization in FL.

Base Kernel. The base kernels in MOGP also have a significant
impact on the results. We compare the MOGP models with linear
kernel, Laplace kernel, Cauchy kernel, and RBF kernel. The expres-
sions for all kernels are shown in Appendix F. The results are shown
in Table 2, and reveal that the RBF kernel stands out as the best-
performing kernel, consistent with previous studies. Additionally,
the Cauchy kernel achieves a runner-up position, demonstrating
results comparable to the RBF kernel. In contrast, the linear kernel
exhibits inferior performance.

Backbone. Recalling that we employ ResNet-18 as the backbone
in deep kernels, it is necessary to analyse the impact of backbone on
the prediction performance. Therefore, we replace ResNet-18 with
EfficientNet-B2 [52], ShuffleNet-v2-2x [35], RegNet-Y-1.6GF [42]
and report results on both dataset in Table 2, where the amounts
of parameters of all backbones are comparable. The results demon-
strate that it is beneficial for prediction to utilize ResNet-18 as
the feature extractor. Meanwhile, ShuffleNet exhibits worst perfor-
mance among all backbones.
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Table 2: The prediction performance for ablation studies. In
the first block, we analyze different levels of personaliza-
tion with various optimized hyperparameters. In the second
block, we conduct experiments with different base kernels.
In the third block, we compare different backbones.

CelebA Dogcat
MSE(↓) ACC%(↑) MSE(↓) ACC%(↑)

Aggregated Hyperparameters

pFed-Mul-K 0.313 88.56 0.659 98.12
pFed-Mul-W 0.449 88.04 0.426 97.82
pFed-Mul-A 0.466 87.52 0.417 97.92
pFed-Mul-N 0.301 90.76 0.398 98.22

Base Kernel

Linear Kernel 0.476 85.80 0.442 96.98
Laplace Kernel 0.436 90.36 0.485 97.87
Cauchy Kernel 0.385 90.40 0.453 97.87
RBF Kernel 0.301 90.76 0.398 98.22

Backbone

EfficientNet 0.306 89.64 0.405 97.67
ShuffleNet 0.396 87.44 0.421 96.09
RegNet 0.301 89.00 0.409 98.22
ResNet 0.301 90.76 0.398 98.22

6 Conclusion
In summary, our approach addresses a crucial limitation in FL,
considering task diversity on clients. The proposed approach in-
tegrates multi-task learning using MOGP at the local level and
federated learning at the global level. MOGP is effective in han-
dling correlated classification and regression tasks, providing a
Bayesian non-parametric framework that inherently quantifies un-
certainty. To overcome challenges in posterior inference, we employ
the Pólya-Gamma augmentation technique, leading to an analytical
mean-field VI. The experimental results demonstrate our method’s
superiority in predictive performance, uncertainty calibration, OOD
detection and convergence rate. The results highlight the method’s
potential across diverse applications.

Acknowledgments
Thisworkwas supported byNSFC Projects (Nos. 62106121, 72171229),
the MOE Project of Key Research Institute of Humanities and So-
cial Sciences (22JJD110001), the Big Data and Responsible Artificial
Intelligence for National Governance, Renmin University of China,
the fundamental research funds for the central universities, and the
research funds of Renmin University of China (24XNKJ13).

Supplementary Data
Supplementary material related to this article can be found online
at https://doi.org/10.48550/arXiv.2412.10897. Technical proofs and
some details of experiment are provided in the online Supplemen-
tary Material.

References
[1] Idan Achituve, Aviv Shamsian, Aviv Navon, Gal Chechik, and Ethan

Fetaya. 2021. Personalized federated learning with gaussian processes.

Advances in Neural Information Processing Systems 34 (2021), 8392–
8406.

[2] Naman Agarwal, Ananda Theertha Suresh, Felix Xinnan X Yu, San-
jiv Kumar, and Brendan McMahan. 2018. cpSGD: Communication-
efficient and differentially-private distributed SGD. Advances in Neural
Information Processing Systems 31 (2018).

[3] Mauricio A. Álvarez, Lorenzo Rosasco, and Neil D. Lawrence. 2012.
Kernels for Vector-Valued Functions: A Review. Found. Trends Mach.
Learn. 4, 3 (2012), 195–266.

[4] Shun-Ichi Amari. 1998. Natural gradient works efficiently in learning.
Neural computation 10, 2 (1998), 251–276.

[5] Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh,
and Sunav Choudhary. 2019. Federated learning with personalization
layers. arXiv preprint arXiv:1912.00818 (2019).

[6] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. 2017. Variational
inference: A review for statisticians. Journal of the American statistical
Association 112, 518 (2017), 859–877.

[7] Longbing Cao, Hui Chen, Xuhui Fan, Joao Gama, Yew-Soon Ong, and
Vipin Kumar. 2023. Bayesian Federated Learning: A Survey. arXiv
preprint arXiv:2304.13267 (2023).

[8] Rich Caruana. 1997. Multitask learning. Machine learning 28 (1997),
41–75.

[9] Mingzhe Chen, Nir Shlezinger, H Vincent Poor, Yonina C Eldar,
and Shuguang Cui. 2021. Communication-efficient federated learn-
ing. Proceedings of the National Academy of Sciences 118, 17 (2021),
e2024789118.

[10] Ronan Collobert and Jason Weston. 2008. A unified architecture for
natural language processing: Deep neural networks with multitask
learning. In Proceedings of the 25th international conference on Machine
learning. 160–167.

[11] Luca Corinzia, Ami Beuret, and JoachimMBuhmann. 2019. Variational
federated multi-task learning. arXiv preprint arXiv:1906.06268 (2019).

[12] Zhongxiang Dai, Bryan Kian Hsiang Low, and Patrick Jaillet. 2020.
Federated Bayesian optimization via Thompson sampling. Advances
in Neural Information Processing Systems 33 (2020), 9687–9699.

[13] Canh T Dinh, Tung T Vu, Nguyen H Tran, Minh N Dao, and Hongyu
Zhang. 2021. Fedu: A unified framework for federated multi-task
learning with laplacian regularization. arXiv preprint arXiv:2102.07148
400 (2021).

[14] Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and Haifeng Wang. 2015.
Multi-task learning for multiple language translation. In Proceedings
of the 53rd Annual Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers). 1723–1732.

[15] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. 2020. On the
convergence theory of gradient-based model-agnostic meta-learning
algorithms. In International Conference on Artificial Intelligence and
Statistics. PMLR, 1082–1092.

[16] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. 2020. Person-
alized federated learning: A meta-learning approach. arXiv preprint
arXiv:2002.07948 (2020).

[17] Min Gao, Jian-Yu Li, Chun-Hua Chen, Yun Li, Jun Zhang, and Zhi-Hui
Zhan. 2023. Enhanced multi-task learning and knowledge graph-
based recommender system. IEEE Transactions on Knowledge and Data
Engineering (2023).

[18] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. 2017. On
calibration of modern neural networks. In International Conference on
Machine Learning. PMLR, 1321–1330.

[19] Farzin Haddadpour and Mehrdad Mahdavi. 2019. On the conver-
gence of local descent methods in federated learning. arXiv preprint
arXiv:1910.14425 (2019).

982

https://doi.org/10.48550/arXiv.2412.10897


KDD ’25, August 3–7, 2025, Toronto, ON, Canada Junliang Lyu, Yixuan Zhang, Xiaoling Lu and Feng Zhou

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 770–778.

[21] James Hensman, Alexander Matthews, and Zoubin Ghahramani. 2015.
Scalable variational Gaussian process classification. In Artificial Intel-
ligence and Statistics. PMLR, 351–360.

[22] Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley.
2013. Stochastic variational inference. Journal of Machine Learning
Research (2013).

[23] Yutao Huang, Lingyang Chu, Zirui Zhou, Lanjun Wang, Jiangchuan
Liu, Jian Pei, and Yong Zhang. 2021. Personalized cross-silo federated
learning on non-iid data. In Proceedings of the AAAI conference on
artificial intelligence, Vol. 35. 7865–7873.

[24] Salman Jahani, Shiyu Zhou, Dharmaraj Veeramani, and Jeff Schmidt.
2021. Multioutput Gaussian Process Modulated Poisson Processes for
Event Prediction. IEEE Transactions on Reliability (2021).
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