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Abstract

Fairness concerns are increasingly critical as machine learn-
ing models are deployed in high-stakes applications. While
existing fairness-aware methods typically intervene at the
model level, they often suffer from high computational costs,
limited scalability, and poor generalization. To address these
challenges, we propose a Bayesian data selection framework
that ensures fairness by aligning group-specific posterior dis-
tributions of model parameters and sample weights with a
shared central distribution. Our framework supports flexible
alignment via various distributional discrepancy measures,
including Wasserstein distance, maximum mean discrepancy,
and f -divergence, allowing geometry-aware control without
imposing explicit fairness constraints. This data-centric ap-
proach mitigates group-specific biases in training data and
improves fairness in downstream tasks, with theoretical guar-
antees. Experiments on benchmark datasets show that our
method consistently outperforms existing data selection and
model-based fairness methods in both fairness and accuracy.

1 Introduction
Artificial intelligence is rapidly expanding into key ar-
eas such as clinical diagnosis (Tiu et al. 2022), text gen-
eration (Gallegos et al. 2024), and financial credit ap-
proval (Khandani, Kim, and Lo 2010). While these advanced
models are powerful, they often exhibit uneven performance
across different groups, such as those defined by gender,
race, or socioeconomic status, which leads to unfair deci-
sions and raising concerns about fairness risks in real-world
applications (Bird et al. 2016). As a result, ensuring fairness
and preventing AI from exacerbating social inequalities have
become critical challenges for both researchers and industry.
Fairness-aware machine learning has thus emerged as a key
area of study to address these issues.

Currently, most fairness-aware machine learning strate-
gies focus on modifying the model itself (Zafar et al. 2015;
Agarwal et al. 2018; Baharlouei, Patel, and Razaviyayn
2024; Chen et al. 2024). However, these approaches often re-
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Figure 1: An illustration of Fair-BADS. Fair-BADS jointly
infers model parameters and sample weights while reducing
bias via posterior alignment to a central distribution.

quire building new models from scratch for each task, result-
ing in high computational costs and low efficiency, which
makes them difficult to scale to large datasets and deep neu-
ral networks. Moreover, even trained fair models may still
encounter unfairness issues during transfer due to general-
ization errors (Dutt et al. 2024).

Rather than addressing fairness solely during model train-
ing or transfer, a key challenge is to tackle the problem di-
rectly from the data. This is increasingly important as mod-
ern models rely heavily on massive raw data, which often
contain imbalance and systemic biases. Meanwhile, man-
ually identifying high-quality data from such large-scale
sources is impractical. As a result, selecting high-quality and
fairness-aware training data has become critical for building
both effective and fair models (Xu et al. 2024).

Data selection offers a practical solution for improving
model fairness by identifying or reweighting training exam-
ples that encourages fair outcomes. However, most exist-
ing methods focus on maximizing data utility or informa-
tiveness, often overlooking fairness and inadvertently rein-
forcing biases against underrepresented groups. Moreover,
many rely on bi-level optimization or meta-learning, which
are computationally intensive and difficult to scale (Fan
et al. 2017). To address these limitations, Bayesian data

ar
X

iv
:2

51
1.

07
03

2v
1 

 [
cs

.L
G

] 
 1

0 
N

ov
 2

02
5

https://arxiv.org/abs/2511.07032v1


selection (Xu et al. 2024) formulates the task as posterior
inference over model parameters and sample weights, us-
ing stochastic gradient Langevin dynamics (SGLD) for effi-
cient optimization. This avoids nested optimization, enables
standard gradient-based updates, and therefore scales well
to large models and datasets. As manually curating high-
quality data becomes infeasible at scale, principled data
selection has become essential for reducing noise, imbal-
ance, and bias, making it a critical component of scalable,
fairness-aware learning.

Building on this motivation, we propose a fairness-aware
data selection framework. While existing approaches often
attempt to enforce fairness by adjusting model parameters
in Euclidean space, this overlooks the fact that model pa-
rameters naturally reside in a more complex, generally non-
Euclidean space. To better reflect fairness in this setting, it
is crucial to consider the intrinsic geometry of the param-
eter space and the distribution of group-specific posteriors
within it. We propose a Bayesian framework that formulates
fairness as the alignment of posterior distributions across de-
mographic groups toward a shared central distribution under
a general class of divergence based objectives. Specifically,
we jointly infer model parameters and sample weights using
a fairness-aware meta-dataset, encouraging group-specific
posteriors to align toward this central distribution via diver-
gences such as Wasserstein distance, maximum mean dis-
crepancy (MMD), or f -divergence. To efficiently approx-
imate high-dimensional posteriors, we adopt Stein varia-
tional gradient descent (SVGD), which deterministically up-
dates particles while preserving diversity. This enables sta-
ble and scalable inference without injecting noise and pre-
vents dominant-group bias from overwhelming the learned
posterior, making the framework well-suited for fairness-
aware learning in large-scale settings.

Our contributions can be summarized as follows: (1) We
propose a data-centric Bayesian framework for fairness-
aware learning that jointly infers model parameters and
instance weights, providing a scalable alternative to tra-
ditional model-centric approaches. (2) We propose a uni-
fied divergence-based formulation that aligns group-specific
posteriors toward a shared central distribution, enabling
flexible and geometry-aware fairness across demographic
groups. (3) We provide theoretical guarantees by deriving
discrepancy based bounds that approximate average group
risk and bound intergroup performance gaps. (4) We use
SVGD for efficient posterior inference, enabling stable up-
dates without nested optimization and ensuring scalability
for fairness-aware learning.

2 Related Works
Data selection. Most established selection strategies
rely on bi-level optimization or meta-learning frame-
works (Grangier, Ablin, and Hannun 2023; Ren et al. 2018;
Shu et al. 2019; Zhang and Pfister 2021), which introduce
an additional outer optimization loop to improve training
data by maximizing model performance on a held-out meta
set. These approaches, including sample-weighting (Grang-
ier, Ablin, and Hannun 2023; Ren et al. 2018) and mini-
batch reweighting (Fan et al. 2017), often require expensive

meta-gradients or reinforcement learning, making them dif-
ficult to scale to large datasets and deep models. Other strate-
gies rely on heuristics such as loss or confidence scores,
for instance, curriculum learning (Bengio et al. 2009) favors
easy samples, online methods (Loshchilov and Hutter 2015;
Katharopoulos and Fleuret 2018; Jiang et al. 2019) prioritize
high-loss or high-gradient examples, and confidence-based
approaches (Cordeiro et al. 2023; Berthon et al. 2021) select
uncertain instances. Most methods focus on performance
and neglect fairness, with only a few adjusting sampling to
meet fairness metrics (Roh et al. 2021). We address this gap
with a Bayesian data selection framework that aligns group-
specific posteriors to incorporate fairness directly.

Fairness-aware learning. Existing bias mitigation meth-
ods generally fall into three categories: preprocessing, in-
processing, and post-processing. Preprocessing methods
aim to reduce discriminatory information in the input data
through fair representation learning (Louizos et al. 2015;
Zemel et al. 2013; Lum and Johndrow 2016; Creager et al.
2019), fair data generation (Jang, Zheng, and Wang 2021),
and data mapping (Calmon et al. 2017). In-processing meth-
ods reduce bias during training by incorporating fairness
constraints into the learning process (Roh et al. 2020; Ba-
harlouei, Patel, and Razaviyayn 2024; Donini et al. 2018;
Gordaliza et al. 2019; Chiappa et al. 2020; Zhang, Lemoine,
and Mitchell 2018). These can be model-specific (Bilal Za-
far et al. 2015; Calders, Kamiran, and Pechenizkiy 2009)
or model-agnostic (Agarwal et al. 2018; Lowy et al. 2022).
Post-processing methods adjust model outputs to meet fair-
ness criteria (Hardt, Price, and Srebro 2016). However,
these approaches often face scalability and generalization
challenges, motivating a shift toward data selection. Tahir,
Cheng, and Liu (2023) is conceptually related in address-
ing both data distribution and posterior weight biases while
overcoming the SGLD limits, ours instead enforces fairness
via Bayesian data selection optimized with SVGD.

3 Preliminaries
In this section, we review the framework of Bayesian data
selection from a fairness perspective and motivate the need
for an efficient approach to posterior inference in this setting.

3.1 Bayesian Formulation for Fair Data Selection
Consider a training dataset Dt = {(xi, yi, si)}Ni=1, where
xi denotes the non-sensitive features, yi ∈ {0, 1} is the bi-
nary label, and si ∈ {0, 1, . . . , S} represents the sensitive
attribute, such as gender or race. The training set Dt may
contain biased samples due to label corruption influenced by
sensitive attributes. For instance, a qualified individual (i.e.,
ytrue = 1) might be assigned a negative label (yobs = 0) due
to group-based prejudice, as in p(yobs = 0 | ytrue = 1, s).
Such biases can significantly degrade a model’s fairness per-
formance, especially when these patterns are learned and
amplified during training.

To mitigate this issue, we assume access to a small meta-
dataset Dm drawn from a fair target distribution, where
labels are unaffected by sensitive attributes: p(x, y, s) =



p(y | x)p(x)p(s). Traditional data selection methods typ-
ically rely on bi-level optimization or meta-learning, where
model parameters are trained on a reweighted training set,
and the weights are optimized in an outer loop guided by
Dm. However, such approaches often incur high computa-
tional overhead and instability due to nested optimization.

The Bayesian formulation (Xu et al. 2024) offers a prin-
cipled alternative by introducing a probabilistic model over
both model parameters θ ∈ RP and instance-level sample
weights w ∈ RN applied to the training data Dt. Then, the
posterior distribution over (θ,w) is given by:

p(θ,w | Dt,Dm) =
p(θ,Dm | w,Dt)p(w)

p(Dm | Dt)

∝ p(θ | w,Dt) p(Dm | θ) p(w),

(1)

where p(θ | w,Dt) denotes the conditional distribution
of model parameters given the sample weights and train-
ing data, p(Dm | θ) encourages θ toward fairness-aware
generalization, and p(w) is a prior over sample weights
(e.g., sparsity-inducing or uniform). This formulation en-
ables learning weights that prioritize training examples most
compatible with the fairness-oriented meta-dataset Dm.

3.2 Efficient Posterior Approximation
Inferring the joint posterior in Eq. (1) is generally in-
tractable, particularly when θ and w are high-dimensional.
To enable scalable inference, we approximate p(θ,w |
Dt,Dm) using tractable methods. Xu et al. (2024) pro-
posed using SGLD, which augments stochastic gradient de-
scent with Gaussian noise in each update step to simulate
Langevin dynamics and sample from the posterior. While
effective in many scenarios, SGLD suffers from slow con-
vergence, sensitivity to step size and noise scale, often re-
sulting in unstable training dynamics.

To overcome these limitations, we adopt SVGD, a de-
terministic, particle-based variational inference method that
approximates the posterior by iteratively updating a set of
particles via functional gradients in a reproducing kernel
Hilbert space (RKHS) (Liu and Wang 2016; Wei et al.
2025). Each particle represents a “sample” from the poste-
rior, and is transported toward high-density regions while
maintaining diversity. Unlike SGLD, SVGD avoids the ran-
domness and instability of stochastic samplers while better
capturing the complex posterior. Formally, given M parti-
cles {z(i)}Mi=1, the update rule is:

z(i) ← z(i) +
ϵ

N

N∑
j=1

[
k(z(j),z(i))∇z(j) log p(z(j))

+∇z(j)k(z(j), z(i))
]
,

(2)

where k(·, ·) is a positive-definite kernel that defines parti-
cle interactions, and ∇z(j) log p(z(j)) denotes the gradient
of the log-posterior with respect to particle z(j). This up-
date encourages convergence to the posterior while mitigat-
ing particle collapse.

4 Methodology
In this section, we propose the Fair Bayesian Data Selection
(Fair-BADS) framework (see Fig. 1), which jointly infers
model parameters and sample weights with fairness con-
siderations. While Bayesian data selection provides a prin-
cipled and scalable alternative to bi-level optimization or
meta-learning, existing approaches often overlook dispari-
ties across demographic groups. As a result, models trained
under such frameworks may overfit to majority groups due
to issues like class imbalance or group-dependent label bias
in Dt, leading to unfair performance across subpopulations.

To tackle this issue, Fair-BADS explicitly models group-
specific posteriors and softly aligns them toward a central
distribution. This central distribution serves as the group
alignment target, defined via a divergence-based objective
across group-specific posteriors. Fairness is then introduced
at the distributional level by regularizing the divergence be-
tween each group-specific posterior and the central distribu-
tion. This allows the model to preserve group-specific sig-
nals while emphasizing globally fair samples.

Formally, we partition the training set Dt into demo-
graphic groups and define, for each group s, a posterior over
model parameters θ and sample weights w is:

ps(θ,w) := p(θ,w | Ds
t ,Dm),

where Ds
t ⊆ Dt is the subset of Dt from group s with size

Ns = |Ds
t |. To allow alignment across groups with differ-

ing sizes, we embed each posterior into a common space of
dimension P + N̄ , where P is the model parameter dimen-
sion and N̄ = maxs Ns. For each group, the weight vector
w is zero-padded to this common dimensionality, allowing
all particles to reside in a consistent joint space and enabling
consistent divergence computation across groups.

We assume that each demographic group induces a dis-
tinct posterior reflecting its statistical characteristics and po-
tential biases. To mitigate inter-group disparities, we in-
troduce a fairness-aware alignment mechanism during the
inference by softly aligning the group specific posteriors
{ps(θ,w)}Ss=1 toward the central distribution p⋆(θ,w), de-
fined as the minimizer of a divergence-based objective:

p⋆(θ,w) = argmin
p

S∑
s=1

λsD(p, ps(θ,w)), (3)

where D(·, ·) is a user-specified distributional discrepancy,
such as Wasserstein distance, MMD, or f -divergence. The
coefficients λs ∈ (0, 1) satisfy

∑
s λs = 1 and control the

contribution of each group (λs = 1/S in our setting to en-
sure equal contribution). This central distribution guides the
model to balance fairness across demographic groups un-
der the chosen D. Specific instantiations and optimization
strategies are discussed in subsequent sections.

4.1 Inference via SVGD
To approximate the joint posterior over (θ,w), we adopt
the SVGD algorithm, inspired by Wei et al. (2025). For
each group s, we maintain a set of M particles {z(m)

s =



(θ(m)
s ,w

(m)
s )}Mm=1, where each particle represents a sam-

ple from the group-specific posterior ps(θ,w) and z
(m)
s ∈

RP+N̄ . According to Eq. (1), the log-posterior can be de-
composed into three terms:

log ps(θ,w) = −
N̄∑
i=1

σ(wi) · L(fθ(xi), yi)︸ ︷︷ ︸
weighted training loss

−
∑

(xi,yi)∈Dm

L(fθ(xi), yi)︸ ︷︷ ︸
meta loss

+

 N̄∑
i=1

σ(wi)− βN̄

2

︸ ︷︷ ︸
weight prior (soft constraint)

,

(4)

where L denotes the cross-entropy loss, and σ is the sigmoid
function used to constrain each weight to (0, 1). Following
Xu et al. (2024), we define p(w) implicitly via a soft prior,
implemented as a regularization term that encourages the av-
erage weight to remain close to a predefined sparsity level β.
Each particle is then updated using the SVGD (Eq. (2)):

z(m)
s ← z(m)

s +
ϵ

M

M∑
l=1

[k(z(l)s , z(m)
s ) · ∇

z
(l)
s

log ps(z
(l)
s )

+∇
z
(m)
s

k(z(l)s , z(m)
s )], (5)

where z = (θ,w) ∈ RP+N̄ denote a sample in the padded
parameter-weight space, k(·, ·) is a kernel function defined
over the joint space to ensure smoothness and diversity
across particles and the gradient term is:

∇z log ps(z)

=

[
∇θ log p(θ | w,Ds

t ) +∇θ log p(Dm | θ)
∇w log p(θ | w,Ds

t ) +∇w log p(w)

]
.

After completing the SVGD updates for each group, we
obtain particle sets {z(m)

s }Mm=1, which are used to construct
an empirical approximation of the group-specific posterior:

Group-specific Posterior: p̃s(z) =
1

M

M∑
m=1

δ(z− z(m)
s ),

where δ(·) denotes the Dirac delta function, and p̃ indicates
that it is an empirical distribution supported on discrete par-
ticles. To encourage fairness across groups, we aim to align
p̃s(z) toward a central distribution:

Central Distribution: p̃⋆(z) =
1

M

M∑
m=1

δ(z− z̄(m)),

where the central distribution is represented by a set of par-
ticles {z̄(m)}Mm=1, which serve as discrete support points
summarizing the shared structure across all group-specific
posteriors. Each particle z̄(m) lies in the same space RP+N̄

as the group particles, allowing consistent comparison and
alignment across distributions. These central particles are
later obtained via central distribution computation (see Sec-
tion 4.2), where we minimize a chosen distributional dis-
crepancy to update {z̄(m)}Mm=1. We will detail this compu-
tation and update procedure in the following.

To incorporate fairness into the posterior inference, we
modify the SVGD update by replacing ∇

z
(l)
s

log ps(z
(l)
s ) in

Eq. (5) with ∇
z
(l)
s

log pfair(z
(l)
s ) that is defined as:

log pfair(z) := log ps(z) + log p⋆(z),

where a regularization term log p⋆(z) is introduced to softly
encourage each group-specific posterior p̃s(z) to align with
a shared central distribution p̃⋆(z). This design guides par-
ticle updates to not only fit the group-specific posteriors but
also remain close to the central distribution, thereby promot-
ing fairness at the population level.

4.2 Computation of Central Distribution
To compute the central distribution, we solve a divergence
minimization problem that aligns group-specific posteriors
toward a central distribution, as defined in Eq. (3). We con-
sider three representative divergence measures: Wasserstein
distance, MMD, and f -divergence.

Wasserstein Distance. The Wasserstein distance W2(·, ·)
between two particle-based distributions is relatively easy
to compute. To measure the discrepancy between the cen-
tral distribution p̃ and a group posterior p̃s, we define a cost
matrix Cs ∈ RM×M

+ , where each element is Cs[i, j] =

∥z(i)s − z̄(j)∥22, representing the squared L2 cost between
group and central particles. A transport plan Ts ∈ RM×M

+
specifies the amount of probability mass transported from
z
(i)
s to z̄(j), subject to uniform marginal constraints:

W 2
2 (p̃, p̃s) = min

Ts

⟨Cs,Ts⟩F ,

s.t. Ts1 = 1
M 1, T⊤

s 1 = 1
M 1,

(6)

where ⟨·, ·⟩F denotes the Frobenius inner product and 1 ∈
RM is the all-ones vector. After solving Eq. (6) and obtain-
ing the optimal plan T⋆

s , the central distribution is computed
by minimizing the weighted sum of Wasserstein distances:

p̃⋆ = argmin
{z̄(m)}M

m=1

S∑
s=1

λs ⟨Cs,T
⋆
s⟩F .

Since the objective is quadratic in {z̄(m)}, the closed-form
solution for the central particles exists:

Z̄⋆ =

S∑
s=1

λsT
⋆
sZs diag(M

−1),

where Zs ∈ RM×(P+N̄) stacks group-specific particles, and
Z̄⋆ ∈ RM×(P+N̄) denotes the barycenter particles.

MMD. The MMD distance between two particle-based
distributions can be computed via the kernel trick, using a
kernel function k̃(·, ·) to measure the discrepancy between
two sample sets. Specifically, the MMD between the central
distribution p̃ and a group posterior p̃s is:

MMD2(p̃, p̃s) =
1

M2

∑
i,j

k̃(z̄(i), z̄(j)) +
1

M2

∑
i,j

k̃(z(i)s , z(j)s )

− 2

M2

∑
i,j

k̃(z̄(i), z(j)s ).



The central distribution is obtained by minimizing the
weighted sum of the MMDs across all groups:

p̃⋆ = argmin
{z̄(m)}M

m=1

S∑
s=1

λsMMD2(p̃, p̃s).

Due to the presence of the kernel, the objective no longer
admits a closed-form solution. Therefore, the optimal central
particles Z̄⋆ must be obtained via gradient descent.

f -divergence. The f -divergence is a general class of di-
vergence measures, defined as:

Df (p ∥ q) =
∫

q(z) f

(
p(z)

q(z)

)
dz,

where f is a convex function. By choosing different f , we
recover various divergence measures. For example, when
f(t) = t log t, we obtain the KL divergence; when f(t) =
− log t, we get the reverse KL divergence; and when f(t) =
t log 2t

t+1 + log 2
t+1 , we obtain the JS divergence.

The f -divergence between two particle-based distribu-
tions is generally intractable due to the need to integrate
density ratios. We approximate it using kernel density esti-
mation (KDE). Given a kernel function k̃(·, ·) and bandwidth
h > 0, the KDEs for p̃ and p̃s are:

p̂(z) =
1

M

M∑
i=1

k̃h(z, z̄
(i)), p̂s(z) =

1

M

M∑
j=1

k̃h(z, z
(j)
s ).

Then the f -divergence between p̃ and p̃s is approximated as:

Df (p̃∥p̃s) ≈
1

M

M∑
j=1

f

(
p̂(z

(j)
s )

p̂s(z
(j)
s ) + ϵ

)
,

where ϵ > 0 is a small constant added for numerical sta-
bility. The optimal central particles Z̄⋆ are then obtained by
minimizing the weighted sum of f -divergences across all
groups using gradient descent.

5 Theoretical Analysis
We present the theoretical guarantee for Fair-BADS from
two perspectives: (i) a discrepancy transfer bound, show-
ing that evaluating the model on the empirical central dis-
tribution p̃⋆ approximates the average group risk; and (ii) a
group fairness disparity bound, demonstrating that perfor-
mance gaps across groups are controlled when their posteri-
ors align with the shared central distribution. Define

Rs(p) ≜ Ez∼p

[
Ls(z)

]
, R(p) ≜ Ez∼p

[
L(z)

]
,

whereL is the loss function used in Eq. (4), and R(·) denotes
the expected risk. The subscript s indicates it is computed
w.r.t. group s only. And we use the following discrepancy-
specific regularity assumptions.

(A1) Loss Regularity. For each group s, the loss Ls is
bounded and satisfies:∣∣EpLs(z)− EqLs(z)

∣∣ ≤ CsD(p, q),

with Cs depending on the choice of D:

• Cs = Ls if D = W2 and Ls is Ls–Lipschitz;

• Cs = ∥Ls∥Hk̃
if D = MMDk̃ and Ls ∈ Hk̃;

• Cs = Bs

√
2cf if D = Df and Ls ∈ [0, Bs], where Hk̃

is a reproducing kernel Hilbert space, Bs and cf are some
constants whose definitions are provided in Section A.

(A2) Cross–Group Compatibility. There exists K < ∞
such that for any z and s, s′, |Ls(z)− Ls′(z)| ≤ K.

Theorem 1 (Discrepancy Transfer Bound) Let p̃⋆ be the
empirical central distribution minimizing Eq. (3) and define
R̄ ≜

∑S
s=1 λsRs(p̃s). Under (A1),

∣∣R(p̃⋆)− R̄
∣∣ ≤ S∑

s=1

λsCsD(p̃s, p̃
⋆). (7)

Concretely:

(Wasserstein)
∣∣R(p̃⋆)− R̄

∣∣ ≤∑
s

λsLsW2(p̃s, p̃
⋆).

(MMD)
∣∣R(p̃⋆)− R̄

∣∣ ≤∑
s

λs∥Ls∥Hk̃
MMDk̃(p̃s, p̃

⋆).

(f -divergence)
∣∣R(p̃⋆)− R̄

∣∣ ≤∑
s

λsBs

√
2cfDf (p̃s∥p̃⋆).

Theorem 2 (Group Fairness Disparity Bound) Suppose
Fair-BADS is run for t = 0, 1, . . ., producing group
posteriors {p̃(t)s }Ss=1 and central p̃(t)⋆ . Define the effective
cross–group gap restricted to the support of the current
central:

Keff(t) ≜ sup
z∈supp(p̃

(t)
⋆ )

max
s,s′

∣∣Ls(z)− Ls′(z)
∣∣.

Then for any s, s′,∣∣∣Ep̃
(t)
s
Ls − E

p̃
(t)

s′
Ls′

∣∣∣
≤CsD(p̃(t)s , p̃

(t)
⋆ ) + Cs′D(p̃

(t)
s′ , p̃

(t)
⋆ ) +Keff(t)

≤2Cmax max
s

D(p̃s, p̃
⋆) +Keff(t),

(8)

where Cmax = maxs Cs.

The term Keff(t) reflects intrinsic group-level difficulty and
cannot be fully eliminated by alignment. However, it typi-
cally decreases over iterations as (i) p̃⋆t concentrates on low-
loss parameter regions, and (ii) learned weights w down-
weight disparity-inducing samples. Section A provides suf-
ficient conditions for Keff(t) → 0 along with full assump-
tions and proofs.

6 Experiments
In the following sections, we first outline the experimental
setup, then compare our method with related work across di-
verse image classification tasks under varying levels of label
bias, followed by ablation studies on our selection strategy.



Method Bias amount: 0.2 Bias amount: 0.4
ACC(↑) DP(↓) DDP(↓) EO(↓) ACC(↑) DP(↓) DDP(↓) EO(↓)

UTKFace
ERM 0.848±0.005 0.062±0.011 0.027±0.011 0.088±0.027 0.770±0.009 0.252±0.012 0.051±0.027 0.291±0.032

FairBatch 0.803±0.034 0.082±0.024 0.048±0.033 0.123±0.069 0.721±0.016 0.254±0.025 0.058±0.030 0.294±0.041

FERM 0.843±0.006 0.069±0.002 0.030±0.014 0.095±0.029 0.780±0.003 0.225±0.020 0.059±0.018 0.296±0.057

BLO 0.805±0.005 0.099±0.007 0.028±0.014 0.154±0.019 0.726±0.008 0.249±0.006 0.057±0.023 0.286±0.027

BADS 0.816±0.013 0.068±0.013 0.050±0.013 0.141±0.023 0.751±0.015 0.225±0.028 0.053±0.014 0.303±0.066

Fair-BADS-W 0.851±0.002 0.062±0.006 0.026±0.003 0.116±0.011 0.787±0.007 0.219±0.021 0.060±0.028 0.309±0.040

Fair-BADS-M 0.849±0.009 0.073±0.012 0.031±0.006 0.132±0.009 0.781±0.007 0.214±0.026 0.050±0.013 0.295±0.035

Fair-BADS-F 0.849±0.006 0.069±0.014 0.023±0.002 0.286±0.014 0.786±0.007 0.211±0.021 0.043±0.012 0.286±0.029

LFW-A
ERM 0.884±0.005 0.142±0.020 0.011±0.006 0.041±0.020 0.821±0.019 0.273±0.025 0.079±0.040 0.192±0.048

FairBatch 0.889±0.008 0.131±0.006 0.016±0.015 0.051±0.015 0.780±0.014 0.251±0.009 0.080±0.016 0.182±0.018

FERM 0.860±0.056 0.142±0.070 0.013±0.003 0.035±0.013 0.829±0.013 0.237±0.042 0.028±0.021 0.130±0.044

BLO 0.888±0.002 0.147±0.010 0.023±0.012 0.068±0.016 0.798±0.024 0.253±0.024 0.084±0.015 0.185±0.028

BADS 0.884±0.004 0.140±0.025 0.014±0.012 0.056±0.023 0.834±0.018 0.217±0.019 0.031±0.017 0.122±0.025

Fair-BADS-W 0.902±0.011 0.129±0.004 0.006±0.004 0.042±0.005 0.859±0.006 0.162±0.018 0.012±0.007 0.052±0.019

Fair-BADS-M 0.901±0.006 0.133±0.015 0.010±0.004 0.034±0.007 0.850±0.006 0.186±0.032 0.024±0.012 0.090±0.041

Fair-BADS-F 0.900±0.003 0.132±0.014 0.014±0.003 0.033±0.009 0.859±0.018 0.189±0.013 0.014±0.007 0.079±0.021

FairFace
ERM 0.716±0.014 0.170±0.038 0.045±0.016 0.198±0.022 0.656±0.007 0.392±0.020 0.030±0.003 0.402±0.022

FairBatch 0.685±0.011 0.139±0.016 0.044±0.015 0.168±0.003 0.629±0.003 0.328±0.019 0.044±0.018 0.357±0.036

FERM 0.699±0.006 0.416±0.002 0.026±0.013 0.156±0.032 0.628±0.006 0.416±0.002 0.026±0.016 0.422±0.017

BLO 0.680±0.005 0.128±0.002 0.048±0.020 0.162±0.021 0.618±0.002 0.320±0.014 0.054±0.008 0.335±0.007

BADS 0.661±0.011 0.159±0.023 0.055±0.010 0.203±0.031 0.632±0.012 0.369±0.096 0.047±0.008 0.400±0.097

Fair-BADS-W 0.718±0.009 0.140±0.033 0.038±0.011 0.165±0.021 0.662±0.009 0.341±0.038 0.026±0.001 0.350±0.038

Fair-BADS-M 0.719±0.008 0.141±0.031 0.040±0.011 0.168±0.022 0.660±0.009 0.342±0.036 0.027±0.008 0.353±0.028

Fair-BADS-F 0.719±0.008 0.126±0.035 0.045±0.012 0.156±0.008 0.663±0.008 0.327±0.042 0.025±0.005 0.335±0.045

Table 1: Evaluation results under different bias amount. For Fair-BADS, we report the results using three different variants.

6.1 Experimental Setup
For each dataset, we simulate label bias using group-
dependent corruption strategies (Wick, Tristan et al. 2019).
Unless otherwise specified, we use 20 particles per group
and set the weight prior strength to β = 0.005. We use the
JS divergence as our choice of f -divergence. The kernel k in
SVGD and k̃ in MMD and f -divergence are both Gaussian
kernels with adaptive bandwidth h = 0.1, numerical sta-
bility constant ϵ = 1e-3. The heuristic kernel may degrade
in high-dimensional spaces, where norm-regularized (Grath-
wohl et al. 2020) or PDE-based kernels (Liu et al. 2019) pro-
vide more robust alternatives.

Datasets. We evaluate our method on three image
datasets: UTKFace (Zhang, Song, and Qi 2017), Labeled
Faces in the Wild with Attributes (LFW-A) (Wolf, Has-
sner, and Taigman 2011; Kumar et al. 2009), and Fair-
Face (Karkkainen and Joo 2021). In UTKFace, race is used
as the sensitive attribute and gender as the prediction target.
For LFW-A, we predict gender and treat “HeavyMakeup”
as the sensitive attribute due to its observed correlation with
gender bias. In FairFace, we perform binary gender classifi-
cation using race as the sensitive variable, grouping individ-
uals as “White” or “Black” to evaluate fairness.

Baselines and Metrics. We evaluate our proposed method
against several representative baselines, including standard
empirical risk minimization (ERM), a sampling-based ap-
proach (FairBatch (Roh et al. 2021)), an in-processing fair-

ness method using f -divergence (FERM (Baharlouei, Pa-
tel, and Razaviyayn 2024)), a reweighting-based data selec-
tion method (BLO) and a Bayesian data selection method
(BADS (Xu et al. 2024)). For our Fair-BADS, we imple-
ment three variants based on different discrepancy measures:
Wasserstein distance (Fair-BADS-W), MMD (Fair-BADS-
M) and f -divergence (Fair-BADS-F). All methods are eval-
uated under a consistent experimental setup, using both ac-
curacy and fairness metrics (Demographic Parity (DP), Dif-
ference in Demographic Parity (DDP) and Equal Opportu-
nity (EO)). Each experiment is conducted with three runs,
and we report the mean ± standard deviation.

6.2 Comparison Results
Table 1 summarizes the results across UTKFace, LFW-A
and FairFace under varying levels of label bias. On both
UTKFace and LFW-A, our Fair-BADS variants consistently
achieve the best and competitive accuracy while reducing
fairness disparities compared to other baselines. In particu-
lar, Fair-BADS-W yields the best overall trade-off, outper-
forming the original BADS in both accuracy and fairness
metrics. Fair-BADS-W shows more stable improvements,
though MMD and f -divergence variants also perform well.
ERM and BLO tend to suffer from increasing fairness gaps
under higher bias, while FairBatch and FERM reduce dis-
parities at the cost of performance. Though BLO and BADS
are originally designed to handle low quality data via data
selection, they do not explicitly address fairness and thus in-



Method LFW-A (bias amount: 0.2) LFW-A (bias amount: 0.4)
ACC(↑) DP(↓) DDP(↓) EO(↓) ACC(↑) DP(↓) DDP(↓) EO(↓)

Fair-BADS-W 0.891±0.018 0.144±0.023 0.014±0.008 0.049±0.029 0.847±0.016 0.192±0.044 0.034±0.008 0.095±0.053

Fair-BADS-M 0.890±0.017 0.142±0.026 0.010±0.005 0.046±0.028 0.846±0.005 0.187±0.054 0.029±0.015 0.090±0.057

Fair-BADS-F 0.889±0.020 0.133±0.025 0.017±0.004 0.039±0.031 0.850±0.020 0.198±0.040 0.029±0.015 0.093±0.049

Table 2: Evaluation results on LFW-A, with CLIP-RN50 used as a zero-shot predictor for meta loss approximation.

Method ACC (↑) DP (↓) DDP (↓) EO (↓)
Backbone: ResNet-18

Fair-BADS-W 0.820±0.015 0.049±0.017 0.031±0.016 0.002±0.001

Fair-BADS-M 0.819±0.007 0.051±0.007 0.030±0.007 0.001±0.001

Fair-BADS-F 0.821±0.016 0.051±0.018 0.030±0.017 0.002±0.001

Backbone: DenseNet-121

Fair-BADS-W 0.841±0.009 0.080±0.002 0.004±0.002 0.001±0.001

Fair-BADS-M 0.845±0.011 0.081±0.003 0.008±0.004 0.003±0.002

Fair-BADS-F 0.837±0.008 0.076±0.006 0.007±0.011 0.002±0.001

Backbone: ViT-B/16

Fair-BADS-W 0.867±0.014 0.160±0.005 0.021±0.006 0.079±0.005

Fair-BADS-M 0.874±0.011 0.156±0.007 0.018±0.006 0.073±0.007

Fair-BADS-F 0.866±0.016 0.160±0.005 0.021±0.008 0.079±0.007

Table 3: Comparison of Fair-BADS variants across back-
bones under bias level 0.4.

advertently reinforce bias by prioritizing samples from the
majority group. To validate these improvements, we con-
duct paired t-tests and find that on UTKFace, Fair-BADS-
W significantly outperforms the next-best method (BADS)
in both accuracy and fairness across all bias levels (p <
0.001). On LFW-A, it also shows significant gains, espe-
cially under high bias (p < 0.01). On FairFace, Fair-BADS-
F and Fair-BADS-M consistently outperform the next-best
method, with significant improvements in accuracy and DP
(p < 0.05).

6.3 Learning without Meta Dataset
In scenarios where no explicit meta dataset Dm is available,
we approximate the meta objective using a zero-shot pre-
dictor f∗(x) trained on external data (e.g., CLIP-RN50). In-
stead of directly evaluating p(Dm | θ), we estimate it as:

log p(Dm | θ) ≈ −KL
[
pθ(y | x)||p(y | f∗(x))

]
, (9)

where pθ(y | x) is the model’s output distribution and
p(y | f∗(x)) is the pseudo label distribution induced by
the zero-shot predictor. This KL divergence acts as a sur-
rogate meta loss, allows us to avoid explicit collection of a
meta set. To compute it, we reserve a small fraction (1%) of
the training data as Dpseudo

m , which is excluded from train-
ing loss throughout training. As shown in Table 2, even un-
der the situation when meta set is not available, our method
still outperforms all baseline approaches in both accuracy
and fairness metrics, despite showing slightly lower perfor-
mance compared to the performance use explicit meta set.
This highlights the framework’s practical advantage in set-
tings where collecting a clean meta set is infeasible.
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Figure 2: Comparison of sample weight distributions across
demographic groups. Left: KDE of sample weights w at the
final training epoch for groups s = 0 and s = 1. Right:
Wasserstein distance between group-specific weight distri-
butions over training epochs.

6.4 Ablation Studies
To assess architectural impact, we compare three backbones:
ResNet-18 (He et al. 2016), DenseNet-121 (Huang et al.
2017), and ViT-B/16 (Dosovitskiy et al. 2021). As shown
in Table 3, ViT-B/16 yields the best accuracy, while all vari-
ants maintain low fairness metrics. This confirms that our
method generalizes well across architectures and that MMD
and Wasserstein distances provide more stable fairness con-
trol than f -divergence.

Beyond architectural variations, we also examine how
fairness emerges throughout training. In Fig. 2, the KDE
plot (left) shows near-identical sample weight distributions
across groups by the final epoch, indicating unbiased data
selection. The Wasserstein distance (right) decreases dur-
ing training, confirming that group posteriors align progres-
sively. This supports the effectiveness of barycenter-based
alignment in improving fairness.

7 Conclusions
We propose Fair-BADS, a framework that addresses fairness
by combining group-specific inference with distributional
alignment. Unlike prior methods that overlook group dis-
parities, we model group-specific posteriors and align them
via a shared central distribution, acting as a soft regular-
izer in SVGD. This approach ensures inter-group consis-
tency without adversarial training or hard constraints. Our
particle-based inference is scalable and naturally promotes
distributional fairness. Experiments demonstrate improved
fairness with strong task performance. Future directions in-
clude extending to continuous attributes, dynamic group dis-
covery, and complex tasks like language generation.
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A Theory: Full Assumptions, Lemmas, and
Proofs

This appendix provides all technical details that under-
lie Sec. 5. Throughout we write z = (θ,w), ps for
the group posterior, p⋆ for the barycenter, and D for the
chosen discrepancy. We separate the analysis for D ∈
{W2,MMDk, Df} and then present unified statements.

A.1 Assumptions
Assumption 1 (Loss regularity w.r.t. D) For each s ∈ S,
the group loss Ls : Ξ→ [0,∞) is measurable and satisfies,
for any distributions p, q on Ξ,∣∣∣EpLs(z)− EqLs(z)

∣∣∣ ≤ CsD(p, q),

with the following instantiations:

• Wasserstein W2: Ls is Ls–Lipschitz under the met-
ric d(·, ·) inducing W2; then Cs = Ls by Kan-
torovich–Rubinstein type arguments one can prove W1

then adapting to W2.
• MMD: Ls ∈ Hk with ∥Ls∥Hk

≤ Cs; then Cs =
∥Ls∥Hk

and the MMD duality yields the bound.
• f -divergence: Ls ∈ [0, Bs]; by Pinsker-type inequali-

ties, |Epf−Eqf | ≤ Bs

√
2cfDf (p∥q) where cf depends

on the chosen f (e.g., cf=1 for KL divergence, cf = 2
for JS divergence and cf = 1/(1+ t) for χ2 divergence).

Remark 1 The constants Cs make explicit how the diver-
gence choice affects tightness: W2 gives linear (but poten-
tially expensive) bounds, MMD/IPMs offer linear bounds
and are kernel-amenable, while f -divergences yield

√
·–type

bounds.

Assumption 2 (Cross–group compatibility) There exists
K < ∞ such that |Ls(z) − Ls′(z)| ≤ K for all z and
s, s′ ∈ S.

Padding for unequal Ns. Let Ps : RP+Ns → RP+N̄

(with N̄ = maxs Ns) be the zero-padding operator used in
the main text. We use the following fact.

Proposition 1 (Divergence preservation under padding)
Let ps, qs be distributions on RP+Ns , and p̄s = (Ps)#ps,
q̄s = (Ps)#qs their pushforwards. Then:

• W2(p̄s, q̄s) = W2(ps, qs);
• MMDk(p̄s, q̄s) = MMDk(ps, qs) for transla-

tion–invariant kernels;
• Df (p̄s∥q̄s) = Df (ps∥qs) for any f–divergence.

Proof. [Proof Sketch for Proposition 1] For Wasserstein dis-
tance, the optimal transport plan between padded distribu-
tions can be constructed from the optimal plan between orig-
inal distributions, preserving the transport cost due to the
isometry property.

For MMD with translation-invariant kernels, the kernel
evaluations depend only on distances, which are preserved
under padding.

For f-divergences, recall that Df (p∥q) =
∫
f
(

dp
dq

)
dq

when p ≪ q. The padded distributions have densities that
factorize as:

p̄s(z) = ps(Qs(z)) · 1supp(Ps)(z) (10)

where the indicator function ensures the measure is sup-
ported on the padded subspace. The density ratio is pre-
served:

dp̄s
dq̄s

(z) =
ps(Qs(z))

qs(Qs(z))
=

dps
dqs

(Qs(z)) (11)

on the support of Ps. Therefore:

Df (p̄s∥q̄s) =
∫

supp(Ps)

f

(
dp̄s
dq̄s

)
dq̄s (12)

=

∫
RP+Ns

f

(
dps
dqs

)
dqs = Df (ps∥qs) (13)

Examples of preserved f-divergences include:

• KL divergence: f(t) = t log t

• JS divergence: f(t) = t log t− (t+ 1) log t+1
2

• χ2 divergence: f(t) = (t− 1)2

• α-divergence: f(t) = tα−αt+α−1
α(α−1)

□
Hence all our bounds proved in the common (padded)

space numerically equal their counterparts in each group’s
native space.

Assumptions. We use the following discrepancy-specific
regularity.

(A1) (Loss regularity) For each s, the loss Ls is bounded and
satisfies a D–Lipschitz–type condition: for all distribu-
tions p, q,∣∣EpLs(z)− EqLs(z)

∣∣ ≤ CsD(p, q),

where Cs depends on the choice of D:

• Cs = Ls if D = W2 and Ls is Ls–Lipschitz;
• Cs = ∥Ls∥Hk

if D = MMDk and Ls ∈ Hk;
• Cs = Bs

√
2cf if D = Df and Ls ∈ [0, Bs]

(Pinsker-type).

(A2) (Cross–group compatibility) There exists K <∞ such
that for any z and s, s′ ∈ S, |Ls(z)− Ls′(z)| ≤ K.

A.2 Discrepancy Transfer Bound (Theorem 1)
Proof. Let R̄ =

∑
s λsRs(p̃s). Then

R(p̃⋆)− R̄ =
∑
s

λs

(
Ep̃⋆Ls(z)− Ep̃s

Ls(z)
)
.

By (A1) for each s,∣∣Ep̃⋆Ls(z)− Ep̃s
Ls(z)

∣∣ ≤ CsD(p̃⋆, p̃s),

and the claimed bound (7) follows by convexity of the abso-
lute value and the triangle inequality.



The three concrete instantiations are immediate and rou-
tine from the three cases of Assumption 1. We present the
proof for completeness.

Case A (Wasserstein): Define R̄ =
∑

s∈S λsR(ps) as
the weighted average risk. Then:

R(p̃⋆)− R̄ = R(p̃⋆)−
∑
s∈S

λsRs(p̃s) (14)

=
∑
s∈S

λs[Rs(p̃
⋆)−Rs(p̃s)] (15)

=
∑
s∈S

λs [Ez∼p̃⋆ [Ls(z)]− Ez∼p̃s
[Ls(z)]]

(16)

Since Ls is Ls-Lipschitz, by the Kantorovich-Rubinstein
duality:

|Ep̃⋆ [Ls(z)]− Ep̃s [Ls(z)]| ≤ Ls ·W2(p̃
⋆, p̃s) (17)

Therefore:∣∣R(p̃⋆)− R̄
∣∣ ≤∑

s∈S

λs |Ep̃⋆ [Ls(z)]− Ep̃s [Ls(z)]| (18)

≤
∑
s∈S

λsLs ·W2(p̃
⋆, p̃s) (19)

Case B (MMD): For L ∈ Hk, using the reproducing
property:

|Ep̃⋆ [Ls(z)]− Ep̃s [Ls(z)]| = |⟨Ls, µp̃⋆ − µp̃s⟩Hk
| (20)

≤ ∥Ls∥Hk
· ∥µp̃⋆ − µp̃s

∥Hk

(21)
= ∥Ls∥Hk

·MMDk(p̃
⋆, p̃s)

(22)

Case C (f-divergence): Using Pinsker’s inequality for KL
divergence (similar bounds exist for other f-divergences):

TV(ps, p
⋆) ≤

√
1

2
DKL(p̃s∥p̃⋆) (23)

For bounded Ls:

|Ep̃⋆ [Ls(z)]− Ep̃s [Ls(z)]| ≤ 2Bs · TV(p̃s, p
⋆) (24)

≤ Bs

√
2DKL(p̃s∥p̃⋆) (25)

□

A.3 Group Disparity Bound (Theorem 2)
Proof. For any s, s′,

Ep̃sLs(z)− Ep̃s′Ls′(z)

=
(
Ep̃sLs(z)− Ep̃⋆Ls(z)

)
+
(
Ep̃⋆Ls(z)− Ep̃⋆Ls′(z)

)
+
(
Ep̃⋆Ls′(z)− Ep̃s′Ls′(z)

)
.

The first and third terms are bounded via (A1) by
CsD(p̃s, p̃

⋆) and Cs′D(p̃s′ , p̃
⋆). The middle term is

bounded by K using (A2). Taking absolute values and fur-
ther maximizing the middle term over s, s′ and the sample
path of p̃⋆ yields (8). □

Now we formalize the condition for the elimination of
Keff(t) in (8).

In order to eliminate Keff(t), we adopt the following
strong assumption: the fairness-aware barycenter converges
to a single parameter z† that equalizes all group losses. This
lets us turn the qualitative statement in Theorem 2 into an
asymptotically vanishing bound with explicit rates that de-
pend on the chosen discrepancy D.

Assumption 3 (Point–mass strong limit) There exists
z† ∈ Ξ such that

Ls(z
†) = Ls′(z

†) ∀s, s′ ∈ S, (26)

and the (empirical) barycenters produced by Fair-BADS sat-
isfy

p̃
(t)
⋆ −→

D
δz† and D(p̃(t)s , p̃

(t)
⋆ )→ 0 for all s ∈ S,

as t→∞.

We now prove that, under Assumption 3, the effective
cross–group term in Theorem 2 vanishes. We present the
result for the three divergences we consider (Wasserstein,
MMD/IPM, and f -divergence). The Wasserstein case pro-
vides a sup-type (support-level) bound; for MMD and f -
divergences, we obtain clean expectation-level bounds.1

A convenient empirical-particle inequality (Wasser-
stein). When p̃

(t)
⋆ is represented by M equally weighted

particles {z(m)
⋆ }Mm=1,

max
1≤m≤M

∥z(m)
⋆ − z†∥ ≤

√
MW2

(
p̃
(t)
⋆ , δz†

)
, (27)

because W 2
2 = 1

M

∑M
m=1 ∥z

(m)
⋆ − z†∥2 and hence

maxm ∥z(m)
⋆ − z†∥ ≤

√
M
(

1
M

∑
m ∥z

(m)
⋆ − z†∥2

)1/2
.

Theorem 3 (Vanishing effective cross–group term)
Assume (A1) and Assumption 3. Define

Keff(t) := sup
z∈supp(p̃

(t)
⋆ )

max
s,s′∈S

∣∣Ls(z)− Ls′(z)
∣∣.

Then Keff(t)→ 0 as t→∞. More precisely:

1. (a) Wasserstein case. Suppose D = W2 and each Ls is
Ls-Lipschitz. Then for every t,

Keff(t) ≤ 2max
s∈S

Ls

√
MW2

(
p̃
(t)
⋆ , δz†

)
, (28)

and hence Keff(t)→ 0 as soon as W2(p̃
(t)
⋆ , δz†)→ 0.

2. (b) MMD/IPM case(expectation level). Suppose D =
MMDk, each Ls ∈ Hk with ∥Ls∥Hk

≤ Cs. Then

max
s,s′∈S

∣∣∣Ep̃
(t)
⋆
[Ls]−Ep̃

(t)
⋆
[Ls′ ]

∣∣∣ ≤ 2CmaxMMDk

(
p̃
(t)
⋆ , δz†

)
(29)

where Cmax = maxs∈S Cs, and thus the expected cross-
group gap vanishes as MMDk(p̃

(t)
⋆ , δz†)→ 0.

1One can turn the expectation bounds for MMD/f -divergence
into support-type statements under additional smoothness/uniform-
continuity assumptions; we do not pursue these technicalities here.



3. (c) f -divergence case (expectation level). Suppose D =
Df , each Ls ∈ [0, Bs], and let cf be the Pinsker-type
constant for Df (e.g., cf = 1 for KL). Then

max
s,s′∈S

∣∣∣Ep̃
(t)
⋆
[Ls]−Ep̃

(t)
⋆
[Ls′ ]

∣∣∣ ≤ 2max
s∈S

Bs

√
2cfDf

(
p̃
(t)
⋆

∥∥δz†
)
,

(30)
and hence the expected cross-group gap vanishes when-
ever Df (p̃

(t)
⋆ ∥δz†)→ 0.

A.4 Fairness–Aware SVGD: ELBO Improvement
Bound

Fairness–aware SVGD improves the ELBO while align-
ing to p⋆. We also analyze one SVGD step for a fixed
group s. Let q(ℓ)s be the empirical particle distribution and
consider the transport t(z) = z + εϕfair(z) with

ϕfair(z) = E
z′∼q

(ℓ)
s

[
k(z′, z)∇z′ log pfair(z

′) +∇z′k(z′, z)
]
,

log pfair = log ps + log p⋆.

Let F (q) = ELBO(q) = −KL(q∥ps) + const. Following
standard techniques, a first–order Taylor expansion plus a
change of variables argument yields

F (q(ℓ+1)
s )− F (q(ℓ)s ) = εE

q
(ℓ)
s

[
tr
(
Aps

ϕfair(z)
)]

+O(ε2),

where Apϕ = ∇ log p⊤ϕ +∇ · ϕ is the Stein operator. Let
ϕ⋆
s be the KSD-optimal direction using log ps alone. Decom-

pose

ϕfair = ϕ⋆
s+∆, ∆(z) = E

z′∼q
(ℓ)
s

[
k(z′, z)∇z′ log p⋆(z′)

]
.

By Cauchy–Schwarz in the RKHS,∣∣E
q
(ℓ)
s
[tr(Aps

∆(z))]
∣∣

≤
∥∥∇ log ps −∇ log p⋆

∥∥
L2(q

(ℓ)
s )
∥k∥H ·KSD(q(ℓ)s , ps),

(31)
which we denote by CKSD · KSD(q

(ℓ)
s , ps). Since ϕ⋆

s maxi-
mizes the linear functional defining the KSD,

E
q
(ℓ)
s

[
tr(Apsϕ

⋆
s(z))

]
= KSD(q(ℓ)s , ps).

Therefore, for sufficiently small ε (dropping O(ε2)) we have

F (q(ℓ+1)
s )− F (q(ℓ)s ) ≥ ε

(
1− CKSD

)
KSD(q(ℓ)s , ps)

where CKSD = ∥∇ log ps − ∇ log p⋆
∥∥
L2(q

(ℓ)
s )
∥k∥H and the

condition CKSD < 1 can be ensured in practice by (i) anneal-
ing the strength of the barycenter term early on; (ii) adap-
tively tuning the kernel bandwidth; or (iii) updating p⋆ fre-
quently so it stays close to each ps.

Remark 2 To explicitly control the interaction between pos-
terior inference and fairness alignment, one can replace
log pfair(z) = log ps(z) + log p⋆(z) by log p

(λ)
fair (z) =

log ps(z) + λ log p⋆(z), which leads to the bound

F
(
q(ℓ+1)
s

)
− F

(
q(ℓ)s

)
≳ ϵ
(
1− λCKSD

)
KSD(q(ℓ)s , ps),

for a constant CKSD that depends on the (squared–)RKHS
norm of the kernel and the score misalignment ∥∇ log p̃s −
∇ log p⋆∥

L2(q
(ℓ)
s )

. Hence, by shrinking λ we can always
guarantee a strictly positive ascent step (monotone ELBO
increase) even when the fairness score term is temporar-
ily antagonistic to the likelihood term. When the two score
fields agree (CKSD ↓ 0), the fairness term no longer slows
the ELBO ascent.

B Algorithm
We provide the pseudocode of the proposed method in Al-
gorithm 1 to clearly outline the key steps of Fair-BADS. The
algorithm maintains group-specific particle approximations
of the joint posterior over model parameters θ and sample
weights w. For each group, particles are updated via SVGD,
where the update direction is informed by both the group
posterior and a shared central distribution that encourages
fairness across groups. The central distribution is iteratively
computed over group-specific particles and serves as a soft
alignment target. At each iteration, particles are updated by
combining gradients from the group likelihood and the cen-
tral prior, resulting in a fairness-aware inference process.
This formulation ensures that each group’s learning signal
is preserved while ensuring inter-group consistency, which
is critical for achieving fair data selection.

Algorithm 1: Fair-BADS

Require: Training data {(xi, yi, si)}Ni=1, meta data Dm,
group indices S, particle count M , learning rate ϵ, dis-
crepancy measure D.

1: Initialize group-specific particles {z(m)
s }Mm=1 for each

s ∈ S.
2: Initialize global central particles {z̄(m)}Mm=1.
3: for each training iteration do
4: for each group s ∈ S do
5: Extract Ds

t ⊂ Dt.
6: for each particle z

(m)
s = (θ(m)

s ,w
(m)
s ) do

7: Compute group posterior gradient
∇z log ps(z)

∣∣
z=z

(m)
s

from Eq. (4).
8: end for
9: Estimate gradient ∇z log p

⋆(z)
∣∣
z=z

(m)
s

from
central distribution.

10: Combine gradients: ∇z log pfair(z) =
∇z log p̃s(z) +∇z log p̃

⋆(z).
11: Update {z(m)

s }Mm=1 via SVGD.
12: end for
13: Compute central distribution Z̄ across all groups as

in Section 4.2.
14: Update KDE reference using central particles.
15: end for


