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Abstract

Personalized Bayesian federated learning (PBFL) handles non-i.i.d. client data
and quantifies uncertainty by combining personalization with Bayesian inference.
However, existing PBFL methods face two limitations: restrictive parametric as-
sumptions in client posterior inference and naive parameter averaging for server
aggregation. To overcome these issues, we propose FedWBA, a novel PBFL
method that enhances both local inference and global aggregation. At the client
level, we use particle-based variational inference for nonparametric posterior repre-
sentation. At the server level, we introduce particle-based Wasserstein barycenter
aggregation, offering a more geometrically meaningful approach. Theoretically,
we provide local and global convergence guarantees for FedWBA. Locally, we
prove a KL divergence decrease lower bound per iteration for variational inference
convergence. Globally, we show that the Wasserstein barycenter converges to the
true parameter as the client data size increases. Empirically, experiments show that
FedWBA outperforms baselines in prediction accuracy, uncertainty calibration,
and convergence rate, with ablation studies confirming its robustness.

1 Introduction

Federated learning (FL) enables privacy-preserving collaborative model training across decentralized
clients [1], making it particularly advantageous in privacy-sensitive domains such as finance [2],
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healthcare [3], and IoT [4]. Conventional FL, however, faces two key challenges from non-i.i.d client
data: (1) convergence degradation due to client drift and (2) suboptimal global model performance
[6, 7]. These limitations impede deployment in safety-critical fields. Personalized FL (PFL) addresses
these limitations through client-specific adaptation techniques including transfer learning [8, 9], meta-
learning [10, 11], and parameter decoupling [12, 13]. Nevertheless, conventional PFL frameworks
relying on frequentist approaches remain vulnerable to overfitting and lack uncertainty quantification -
crucial shortcomings for safety-critical applications. This motivates personalized Bayesian FL (PBFL)
[16], which integrates Bayesian inference with PFL via two key mechanisms: prior regularization
against overfitting and posterior inference for uncertainty quantification [19, 20].

Although PBFL has many advantages, existing methods face two main challenges: (1) Performing
posterior inference on clients is challenging due to the lack of analytical solutions for model parameter
posteriors, requiring approximation methods such as variational inference (VI) [23]. To simplify
inference, many studies assume a parameterized variational distribution, such as Gaussian, to obtain
a tractable evidence lower bound (ELBO) [19, 24, 25]. However, this parameterization introduces
errors, as the true posterior is often complex and non-Gaussian [26]. (2) Performing aggregation on
the central server is challenging because aggregating the posteriors from clients is not straightforward.
To simplify the aggregation, many works upload the parameters of variational distributions from the
clients and then average these parameters on the server to obtain the updated global prior [19, 27].
However, this is problematic since information geometry [28] indicates that distributions lie on a
manifold, where “averaging” differs from that in parameter space.

To address the aforementioned issues, we propose a novel PBFL method, federated learning with
Wasserstein barycenter aggregation (FedWBA), which enhances both local posterior inference and
global aggregation. At the local level, we avoid parameterizing the variational distribution and
instead employ particle-based VI. It represents the posterior with a set of particles, offering more
nonparametric flexibility than parameterized VI. At the global level, we propose a particle-based
Wasserstein barycenter aggregation method. It finds the barycenter of local posteriors on a manifold
induced by the Wasserstein distance, combining client particles into a new set for the global prior.
This method has a clearer geometric interpretation than parameter averaging. Theoretically, we
guarantee the convergence of the proposed method. Our main contributions are as follows:

(1) We propose a novel PBFL method called FedWBA. At the local level, we use particle-based VI for
greater nonparametric flexibility, while at the global level, we introduce a particle-based Wasserstein
barycenter aggregation, which is more geometrically meaningful.

(2) We provide theoretical convergence guarantees at both the local and global levels. Locally, we
prove a lower bound on the Kullback-Leibler (KL) divergence decrease per iteration, ensuring the
convergence of variational inference. Globally, we show that as client data size approaches infinity,
the Wasserstein barycenter converges to the true parameter.

(3) Comprehensive experiments demonstrate the superiority of FedWBA in prediction accuracy,
uncertainty calibration, and convergence rate compared to baselines. Additionally, ablation studies
evaluate the robustness of our approach w.r.t. different components.

2 Related Works

Personalized Federated Learning can be taxonomized into two principal paradigms according
to [29]: The first personalizes global models through client-specific fine-tuning. Regularization-
based methods, such as FedProx [30] add a proximal term to the loss function to measure model
discrepancies, providing an intuitive and effective solution. Meta-learning approaches, such as
Per-FedAvg [11] learn model initializations for rapid client adaptation, later enhanced by pFedMe
[31] through Moreau envelope optimization. The second strategy focuses on personalizing the
models by modifying the FL aggregation process, aligning with our PFL goal. Parameter-decoupling
methods, exemplified by FedPer [12], decompose deep neural networks into shared base layers for
feature extraction and client-specific heads for task adaptation. Multi-task learning methods, such
as FedAMP [32] employs attention-based similarity weights, though sensitive to data quality. Our
method can be considered as a form of the meta-learning approach.

Bayesian Federated Learning focuses on the inference and aggregation of posterior distributions
over model parameters across clients. Depending on how the posterior is represented, BFL methods
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can be broadly categorized into parametric and nonparametric approaches. Parametric methods
assume a specific form for the posterior—typically a Gaussian—for tractability. Representative works
include pFedBayes [19], FOLA [33], pFedVEM [25], FedPA [52], FedEP [53], and BA-BFL [34].
Although BA-BFL introduces geometric aggregation perspectives, it still relies on restrictive Gaussian
posterior assumptions. FedHB [54] extends this to Gaussian mixtures, yet remains constrained by
parametric forms. In contrast, nonparametric methods avoid strong assumptions on the posterior,
enabling more flexible representations. For instance, FedPPD [27] employs MCMC to characterize
local posteriors, while distributed SVGD (DSVGD) [36] adopts a particle-based approach. However,
DSVGD requires three SVGD updates per communication round, which significantly increases
computational cost. Our method advances this line of work by enabling single-round particle
transport while preserving flexible posterior representations free from Gaussian constraints.

3 Preliminaries

In this section, we provide an overview of Stein variational gradient descent and Wasserstein barycen-
ter aggregation.

3.1 Stein Variational Gradient Descent

SVGD approximates target distribution p(x) by iteratively transforming particles from initial distri-
bution q(x) through t(x) = x+ ϵϕ(x), where ϵ is the step size and ϕ(·) : RM → RM maximizes
the KL divergence reduction rate. The objective is to find a t that minimizes KL(q[t](x)∥p(x)).
Computing the derivative of the KL w.r.t. ϵ at ϵ = 0 yields a closed-form solution:

∇ϵKL(q[t](x)∥p(x))
∣∣
ϵ=0

= −Eq(x)[trace(Apϕ(x))],

whereApϕ(x) = ∇x log p(x)ϕ(x)
⊤+∇xϕ(x). To maximize the rate of decrease in KL divergence,

we aim to select ϕ such that Eq(x)[trace(Apϕ(x))] is as large as possible.

The constrained optimization is resolved via reproducing kernel Hilbert spaces (RKHS) [37]: Let
k(·, ·) be a positive-definite kernel defining an RKHSH, withHD = H× . . .×H denoting its D-
dimensional product space for vector-valued functions f = (f1, . . . , fD) where fi ∈ H. Constraining
ϕ ∈ HD with ∥ϕ∥HD

≤ 1, the steepest descent direction admits the following analytic expression:

ϕ∗(·) = ψ(·)/∥ψ∥HD
, ψ(·) = Eq(x)[Apk(x, ·)].

If we approximate the distribution q(x) using a finite set of particles located at {xi}Ni=1, the iterative
algorithm at the l-th iteration can be formulated as follows:

x
(l+1)
i = x

(l)
i +

ϵ

N

N∑
j=1

[
k(x

(l)
j ,x

(l)
i )∇x log p(x) +∇xk(x,x

(l)
i )
] ∣∣∣

x=x
(l)
j

.

The first term in the update formula attracts particles towards high-probability regions, while the
second term acts as a repulsive force, preventing particle clustering and ensuring a more uniform
exploration of the distribution’s support.

3.2 Wasserstein Barycenter Aggregation

The Wasserstein distance from optimal transport theory provides geometric distribution comparison
through minimal transport cost, with the 2-Wasserstein case defined as:

W 2
2 (p(x), q(x)) = min

π∈Π
Eπ(x,x′)[∥x− x′∥2], (1)

where π(x,x′) represents a joint distribution with marginals p and q respectively, and Π denotes the
set of all such joint distributions [38]. The Wasserstein distance has a clear physical interpretation.
The norm term ∥x− x′∥2 represents the cost of transporting a unit mass from x to x′, and π(x,x′)
is a transport plan that specifies the amount of mass to move from x to x′. Therefore, the Wasserstein
distance is the minimal transportation cost, and the optimal π∗(x,x′) is the plan that achieves this
minimal cost among all plans.
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Figure 1: Overview of FedWBA. Left: System diagram. Clients upload local posterior particles
to server for aggregation, server updates global prior particles and redistributes them to clients.
Right: Local posterior particles from maximizing local ELBO, global prior particles as Wasserstein
barycenter of K local posteriors.

The Wasserstein barycenter provides a geometric mean of distributions by minimizing the weighted
sum of Wasserstein distances to given distributions [39]. For a set of probability distributions {pi}Ki=1

with weights {wi}Ki=1 satisfying
∑K

i=1 wi = 1, wi ≥ 0, the Wasserstein barycenter is defined as:

p = argmin
p∈P

1

K

K∑
i=1

wiW
2
2 (p, pi),

where P is the set of probability distributions. The Wasserstein barycenter has the advantage of a
clear geometric interpretation, but a drawback is the challenging computation of the Wasserstein
distance. This difficulty arises because identifying the optimal transport plan between continuous
distributions is complex and analytically tractable only in special cases [39]. Nevertheless, it is worth
noting that when the given distributions are discrete, the Wasserstein distance can be estimated via
linear programming, making the computation of the barycenter tractable [41, 42].

4 Methodology

In this section, we introduce our federated learning with Wasserstein barycenter aggregation (Fed-
WBA) approach. As illustrated in Figure 1, the training process is iterative: clients begin by down-
loading the global prior from the server. Using this global prior, each client updates its local posterior,
represented as a set of particles, via SVGD. The updated particles are then uploaded to the server for
aggregation, performed using Wasserstein barycenter aggregation. This iterative process continues
until convergence. Each client adapts the global prior to its local data, ensuring personalization, while
the global prior, formed by aggregating local posteriors, reflects overall patterns.

4.1 Problem Definition

We consider a distributed system consisting of a single server and K clients. Assume all clients share
the same model with parameters θ ∈ RM , and each of the K clients has its own dataset {Dk}Kk=1. We
represent the global prior on the server using a set of particles {θi}Ni=1, and similarly, use {θk,i}Ni=1
to represent the local posterior on the k-th client. Distributions without a hat denote continuous
distributions, while those with a hat represent the corresponding empirical (discrete) distributions
expressed through particles.

4.2 Local Posterior via Stein Variational Gradient Descent

In each communication round, on the k-th client, a global prior over the model parameters p(θ)
is downloaded from the server. Our goal is to adapt this prior to the local data using Bayes’ rule,
resulting in the posterior distribution of the model parameters:

p(θ | Dk) ∝ p(Dk | θ)p(θ),
where p(θ) is the prior, p(Dk | θ) is the categorical likelihood, and p(θ | Dk) is the posterior. Since
the likelihood is usually parameterized by a neural network, it is typically non-conjugate to the prior.
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As a result, the posterior generally lacks an analytical expression. To address this, approximate
inference methods are employed to approximate the posterior. VI is among the most widely used
approaches for this purpose. Specifically, in VI, the posterior p(θ | Dk) is approximated by a
variational distribution qk(θ). The optimal variational distribution is obtained by minimizing the KL
divergence between them or, equivalently, by maximizing the ELBO:

F (qk(θ)) = Eqk(θ)[log p(Dk|θ)]−KL
(
qk(θ) ∥ p(θ)

)
.

Prior methods [19, 24, 25] commonly impose parametric assumptions (e.g., Gaussian) on qk(θ) for
ELBO tractability, yet suffer from approximation mismatch when the true posterior deviates from
assumed forms [26]. Inspired by [36], we advocate for using the SVGD method, which employs a
set of particles to flexibly represent the variational distribution. This approach eliminates the need for
specific parametric assumptions. Specifically, we assume that the variational distribution qk(θ) is
represented by a set of particles {θk,i}Ni=1, which are iteratively updated according to SVGD. The
particle update rule in the (l)-th iteration is given by:

θ
(l+1)
k,i = θ

(l)
k,i +

ϵ

N

N∑
j=1

[
k(θ

(l)
k,j ,θ

(l)
k,i)∇θ log p(θ | Dk) +∇θk(θ,θ

(l)
k,i)
] ∣∣∣

θ=θ
(l)
k,j

, (2)

where ∇θ log p(θ | Dk) = ∇θ log p(θ) + ∇θ log p(Dk | θ) according to Bayes’ rule, k(·, ·) is a
positive definite kernel corresponding to a RKHS.

As the number of particles N increases, the empirical distribution of {θk,i}Ni=1 asymptotically
converges to the optimal variational distribution in the corresponding RKHS; when we use only a
single particle N = 1, the maximum a posteriori (MAP) estimate can be obtained [37].

4.3 Global Prior via Wasserstein Barycenter Aggregation

In each communication round, the server needs to aggregate the posterior distributions uploaded by
multiple clients into a global prior, which is a challenging procedure. Previous works [19, 27] used
a naive approach by averaging the parameters of the uploaded posteriors and treating the resulting
distribution as the aggregated one. We argue that this aggregation method is problematic because,
according to information geometry [28], distributions lie on a manifold, where the “average” on the
manifold differs from the “average” in the parameter space. A visual illustration of this difference
can be seen in Figure 4 (Section A).

To address this issue, we propose using Wasserstein barycenter aggregation, leveraging the geometric
properties of the manifold where the local posteriors reside. Unlike previous works, our approach
replaces parameter averaging with Wasserstein distance-based averaging, offering a clearer geometric
interpretation. Specifically, after applying SVGD, the variational distribution qk(θ) on the k-th client
is approximated as an empirical measure q̂k(θ) using particles {θk,i}Ni=1; similarly, the global prior
p(θ) is also approximated as an empirical measure p̂(θ) using particles {θi}Ni=1:

q̂k(θ) =
1

N

N∑
i=1

δθk,i
(θ), p̂(θ) =

1

N

N∑
i=1

δθi(θ),

where δθ(·) is the Dirac measure. To define the Wasserstein distance between p̂(θ) and q̂k(θ), we
define a distance matrix Mk ∈ RN×N between the global prior particles and local posterior particles:

Mk,i,j = ∥θi − θk,j∥2,

where i, j represents the entry in the i-th row and j-th column. We then define the transport plan as a
matrix Tk ∈ RN×N which is a discrete version of the joint distribution π(·, ·) in Equation (1). Then
the Wasserstein distance between p̂(θ) and q̂k(θ) can be written as:

W 2
2 (p̂, q̂k) = min

Tk∈T
⟨Mk,Tk⟩F , s.t. Tk1 =

1

N
1, T⊤

k 1 =
1

N
1, Tk ≥ 0, (3)

where T is the set of all possible Tk and ⟨·, ·⟩F is the Frobenius inner product between two matrices.
The constraints of Tk correspond to the marginal properties of π(·, ·). Let T∗

k denote the optimal
transportation plan in Equation (3). It is easy to see that this is a linear programming problem, which
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can be solved using general optimization packages. However, more specialized algorithms, such as
Orlin’s algorithm, also exist [40, 42].

After obtaining T∗
k, we can update the global prior as the Wasserstein barycenter of K local posteriors:

p̂
∗
(θ) = argmin

{θi}N
i=1

1

K

K∑
k=1

⟨Mk,T
∗
k⟩F . (4)

Denoting Θ = [θ1, . . . ,θN ]⊤ ∈ RN×M to be the stack of global prior particles and Θk =
[θk,1, . . . ,θk,N ]⊤ ∈ RN×M to be the stack of local posterior particles on the k-th client, it is
easy to prove that the objective function in Equation (4) is quadratic w.r.t. Θ, so the optimal Θ∗ has
an analytical solution (see proof in Section B):

Θ∗ =
1

K

K∑
k=1

T∗
kΘkdiag(N−1). (5)

After obtaining the optimal global prior particles {θ∗i }Ni=1, a continuous global prior is required on
the clients for SVGD updates, as the gradient of the log-prior must be computed in Equation (2). To
achieve this, we employ kernel density estimation (KDE) to construct a continuous global prior:

p∗(θ) =
1

N

N∑
i=1

k̃(θ,θ∗i ), (6)

where k̃(·, ·) is a normalized kernel in KDE, which is different from the kernel k(·, ·) in SVGD.

4.4 Algorithm

In summary, at the client level, each client receives the global prior particles and reconstructs a
continuous prior using Equation (6), then updates the local posterior particles via Equation (2). At the
server level, the global prior particles are updated by aggregating the uploaded local posterior particles
using Equation (5). We term this method FedWBA, with its pseudocode provided in Section C.

5 Theoretical Analysis

In this section, we aim to establish the convergence properties of our proposed method. Locally,
we demonstrate that the ELBO increases with each iteration. By providing a lower bound for
the difference in ELBO between consecutive iterations, we ensure that as the iterative process of
SVGD proceeds, the variational distribution represented by particles is getting closer to the true
posterior. Globally, we show that as the data size on each client tends to infinity, the Wasserstein
barycenter converges to a delta measure centered at the true parameter. This convergence implies
that the aggregated global prior effectively captures the overall patterns. The proofs are presented in
Sections D and E, respectively.
Assumption 5.1. ∇θt(θ) is a positive definite matrix, where the eigenvalues ei > 0 for i =
1, · · · , D.
Assumption 5.2. ϵ is small enough s.t. ∥ϵ∇θϕ(θ)∥ < 1.
Theorem 5.3. Under Theorems 5.1 and 5.2, given SVGD iteration l, with client k scheduled, the
increase in the ELBO from iteration l to l + 1 satisfies the inequality:

F
(
q
(l+1)
k (θ)

)
− F

(
q
(l)
k (θ)

)
≥ ϵD

(
q
(l)
k (θ), p̃(θ | Dk)

)
, (7)

where ϵ is the step size in SVGD, p̃(θ | Dk) denotes the unnormalized posterior distribution and
D(q, p) stands for the kernelized Stein discrepancy:

D(q, p) = max
ϕ∈HD

{Eq(θ)[trace(Apϕ(θ))], s.t. ∥ϕ∥HD
≤ 1}.

Theorem 5.3 shows that the ELBO increases with each iteration, which equivalently ensures that
the KL divergence between the variational distribution and the true posterior decreases, with the
lower bound of its decrease determined by the kernelized Stein discrepancy. This implies that qk(θ)
converges to p(θ | Dk) as the iterations progress.
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Assumption 5.4. Ξ is a compact space in ρ metric, and θ0 is an interior point of Ξ. All clients have
equal data size, i.e., sk = S/K for k = 1, . . . ,K, where sk is the data size of client k and S is the
total data size.
Assumption 5.5. For any θ,θ′ ∈ Ξ and k = 1, . . . ,K, there exist positive constants α and CL, s.t.
the following inequality holds:

h2
sk(θ,θ

′) > CLρ
2α(θ,θ′).

Assumption 5.6. There exist constants C1 > 0, 0 < C2 <
C2

1

212 , a function Ψ(u, r) > 0 that is
non-increasing in u ∈ R+ and non-decreasing in r ∈ R+. For all k = 1, . . . ,K, any u, r > 0, and
all sufficiently large s, the generalized bracketed entropy H[] satisfies

H[]

(
u, {p(Dk|θ) : θ ∈ Ξ, hsk(θ,θ0) ≤ r}, hsk

)
≤ Ψ(u, r) for all k = 1, . . . ,K;

and ∫ C1r

C1r2/212

√
Ψ(u, r) du < C2

√
sr2.

Assumption 5.7. There exist positive constants κ and cπ s.t., uniformly over k = 1, . . . ,K,

Π

(
θ ∈ Ξ :

1

s

s∑
i=1

EPθ0
exp

(
κ log+

p(Dki|θ0)
p(Dki|θ)

)
− 1 ≤ log2 s

s

)
≥ exp(−cπK log2 s),

where log+ x = max(log x, 0) for x > 0.
Assumption 5.8. The metric ρ satisfies the following property: for any N ∈ N, θ1, . . . ,θN ,θ′ ∈ Ξ

and nonnegative weights
∑N

i=1 wi = 1,

ρ

(
N∑
i=1

wiθi,θ
′

)
≤

N∑
i=1

wiρ(θi,θ
′).

Theorem 5.9. Assuming Theorems 5.4 to 5.8 hold for all client posteriors {p(θ | Dk)}Kk=1, let
s = |Dk| denote the data size on each client. Then, as s→∞, we have:

W2(p(θ), δθ0
(θ)) = Op

√ log2/α s

s1/α

 ,

where δθ0
denotes the Dirac delta measure centered at the true parameter θ0, the Op notation is w.r.t.

the probability measure P
(S)
θ0

and α is a positive constant introduced in Theorem 5.5.

Theorem 5.9 shows that the Wasserstein barycenter converges to the true parameter θ0 at a rate of
s−

1
2α up to logarithmic factors, demonstrating that our global aggregation mechanism effectively

combines client information to approximate the true parameter.

6 Experiments

In this section, we utilize four real-world datasets to showcase the performance of FedWBA in terms
of prediction accuracy, uncertainty calibration, and convergence rate. We perform all experiments
using a server with GPU (NVIDIA GeForce RTX 4090). 2

6.1 Experimental Setup

Baselines: We conduct comprehensive comparisons against state-of-the-art FL/PFL methods im-
plemented in the standardized framework [43]. Specifically, we compare our approach against the
following FL methods: (1) FedAvg [5], (2) FedProx [30], (3) Scaffold [44]; PFL methods: (4)
FedPer [12], (5) PerFedAvg [11], (6) pFedME [31]; and BFL methods : (7) pFedBayes [19], (8)
pFedVEM [25], (9) pFedGP [35] and (10) DSVGD [36].

2Our code is publicly available at https://github.com/TingWei1006/FedWBA
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Table 1: Test accuracy (% ± SEM) over 50, 100, 200 clients on MNIST, FMNIST, CIFAR-10 and
CIFAR-100. Best results are bolded; second-best results are underlined. Dashes denote DSVGD
results unavailable within 10 hours on CIFAR-10/CIFAR-100.

DATASET METHOD 50 CLIENTS 100 CLIENTS 200 CLIENTS 50 CLIENTS 100 CLIENTS 200 CLIENTS DATASET

MNIST

FEDAVG 91.98± 0.07 91.76± 0.08 90.94± 0.06 59.24± 0.70 55.96± 0.21 51.78± 0.36

CIFAR-10

FEDPROX 92.12± 0.08 92.04± 0.11 90.82± 0.16 60.26± 0.42 58.87± 0.60 58.86± 0.60
SCAFFOLD 92.90± 0.07 92.14± 0.08 90.85± 0.11 62.90± 0.38 61.42± 0.51 60.51± 0.60

FEDPER 96.53± 0.02 95.98± 0.05 94.19± 0.04 73.53 ± 0.07 68.95± 0.21 65.41± 0.11
PERFEDAVG 94.65± 0.15 93.60± 0.12 90.61± 0.09 67.70± 0.41 62.17± 1.06 61.70± 0.90

PFEDME 95.70± 0.02 95.60± 0.02 93.82± 0.02 72.62± 0.17 71.33± 0.15 69.72± 0.22

PFEDBAYES 95.83± 0.05 94.15± 0.03 92.77± 0.10 72.83± 0.16 68.62± 0.18 66.75± 0.21
PFEDVEM 97.90± 0.05 97.12± 0.06 96.42± 0.10 73.20± 0.20 71.90± 0.1 70.10 ± 0.30

PFEDGP 97.69± 0.15 97.05± 0.19 96.48± 0.21 72.61± 0.13 71.87± 0.22 69.73± 0.15
DSVGD 96.41± 0.02 96.19± 0.03 95.97± 0.01 − − −

OURS 97.99 ± 0.03 97.36 ± 0.01 96.95 ± 0.01 73.40± 0.25 72.68 ± 0.14 69.83± 0.03

FMNIST

FEDAVG 84.60± 0.22 84.06± 0.09 83.14± 0.05 25.09± 0.14 24.49± 0.24 21.53± 0.19

CIFAR-100

FEDPROX 84.65± 0.08 83.51± 0.09 82.95± 0.15 25.34± 0.12 34.56± 0.31 34.56± 0.30
SCAFFOLD 85.49± 0.19 83.57± 0.10 82.56± 0.16 47.45± 0.67 44.62± 0.16 41.48± 0.50

FEDPER 91.65± 0.02 90.01± 0.07 88.23± 0.05 52.88± 0.22 51.43± 0.16 38.88± 0.29
PERFEDAVG 90.03± 0.10 87.40± 0.09 85.03± 0.03 51.42± 0.12 49.02± 0.29 35.84± 0.19

PFEDME 90.32± 0.14 89.63± 0.19 89.19± 0.23 58.40± 0.17 57.66± 0.19 55.23± 0.28

PFEDBAYES 91.70± 0.03 91.53± 0.06 90.50± 0.06 61.45± 0.10 60.58± 0.17 55.92± 0.34
PFEDVEM 91.80± 0.10 91.40± 0.10 90.70± 0.10 57.57± 0.41 55.32± 0.11 49.95± 0.35

PFEDGP 91.83± 0.05 91.51± 0.07 90.58± 0.15 63.30± 0.10 61.30± 0.20 59.10± 0.22
DSVGD 92.41± 0.04 91.33± 0.02 90.67± 0.02 − − −

OURS 92.50 ± 0.06 91.65 ± 0.02 90.97 ± 0.08 64.21 ± 0.02 61.73 ± 0.16 59.22 ± 0.12

Datasets: To benchmark under realistic non-i.i.d. conditions with label skew, we evaluate on four
vision datasets: MNIST, FashionMNIST (FMNIST) [46], CIFAR-10, and CIFAR-100 [47]. We
adopt the setup from [19, 25, 35], where each client receives 5 unique labels for MNIST, FMNIST,
and CIFAR-10, and 10 labels sampled from distinct superclasses for CIFAR-100.

Setup: We conduct all experiments with 100 communication rounds and 20% client participation
per round, sufficient for algorithm convergence. We evaluate performance with client counts K ∈
{50, 100, 200}, considering that more clients disperse the training data. Following established
architectures in prior work, we implement lightweight models: for MNIST and FMNIST, adopting
the single-hidden-layer MLP from [19, 25], and for CIFAR-10/100, deploying the LeNet-style CNN
in [35] to accommodate resource constraints.

Hyperparameter: Similar to [37], in all SVGD experiments, we employ the radial basis function
(RBF) kernel k(θ,θ0) = exp(−∥θ−θ0∥2

2

h ). The bandwidth h is set as h = med2
logN , with med being

the median of pairwise particle distances in the current iteration. The bandwidth of the Gaussian
kernel k̃(·, ·) used for KDE is set to 0.55. We use AdaGrad with momentum to set the learning rate ϵ.
Considering communication constraints from uploaded data size, we set the number of particles to 10,
balancing computational accuracy and communication overhead in SVGD, mitigating communication
bottlenecks without sacrificing much variational inference performance.

6.2 Performance of Prediction

As shown in Table 1, the algorithm performance is reported under optimal hyperparameter config-
urations. Given that the global model acts as a prior regularizer, we primarily focus on client-side
performance; additionally, we designed experiments to verify that the global model’s performance is
comparable to FL baselines, as detailed in Section F.1. Due to DSVGD failing to produce results
within 10 hours on CIFAR-10 and CIFAR-100, we only report its performance on MNIST and
FMNIST. As is evident in Table 1, the proposed method outperforms the existing approaches in nearly
all scenarios. This demonstrates FedWBA’s strong adaptability to diverse real datasets, delivering
consistent performance irrespective of data type or scale. Partial results are copied from [35, 25].

The performance superiority of FedWBA stems from its unique nonparametric design. In our
approach, particles flexibly represent both the local posterior and the global prior, eliminating the
need for parametric constraints. This nonparametric representation gives the model strong fitting
ability, allowing it to better capture data patterns, thus having an edge over baseline methods with
parametric assumptions. Also, as a Bayesian algorithm, FedWBA excels in few-shot scenarios. When
the number of clients increases and per client data volume is small, FedWBA can use its Bayesian
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Figure 2: Reliability diagrams of top four methods on CIFAR-100. The perfect calibration is plotted
as a red diagonal, and the actual results are presented as bar charts. The gap between the top of each
bar and the red line represents the calibration error. The ECE is calculated and placed in the corner of
the figure. FedWBA demonstrates the best calibration performance, ranking first in terms of ECE.
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Figure 3: Comparison of convergence rates of different methods on MNIST, FMNIST, CIFAR-10,
and CIFAR-100 with 50 clients. FedWBA exhibits the fastest convergence, with rapid growth in the
first 10 communication rounds followed by steady improvement.

features to learn and infer from limited data, resulting in better performance. Moreover, FedWBA
has relatively small accuracy fluctuations. This stability is crucial in practical applications, especially
in distributed learning with data heterogeneity and limited data, providing more reliable results.

6.3 Performance of Uncertainty Calibration

Benefiting from Bayesian principles, FedWBA provides superior predictive uncertainty quantification.
Under identical experimental conditions as detailed in Section 6.1, we evaluate calibration perfor-
mance through reliability diagrams in Figure 2. These diagrams compare model confidence (bars)
against perfect calibration (diagonal), with FedWBA showing closest alignment. We also calculate
the expected calibration error (ECE), which, as [49] suggests, measures the weighted average of
empirical accuracy and model confidence. For the CIFAR-100 dataset, we present only the top-four
performing methods; details of the remaining algorithms are provided in Section F.2. Results for
additional datasets are also detailed in Section F.2, further corroborating the consistent superiority of
our approach across diverse visual recognition tasks.

FedWBA attains a lower ECE by leveraging Bayesian principles. It integrates prior knowledge and
updates beliefs based on observed data, which is essential for precise uncertainty quantification.
Empowered by SVGD, it adapts well to data characteristics, enabling more accurate uncertainty
quantification. In contrast, baseline models usually lack this adaptability, leading to subpar calibration
and less accurate uncertainty quantification.

6.4 Convergence Rate

We compare the convergence rate of FedWBA with baseline models, updating local parameters 10
times per client before each server upload. The experiment involves 50 clients and runs for 100
communication rounds across MNIST, FMNIST, CIFAR-10, and CIFAR-100, with all other settings
identical to those in Section 6.1. Test accuracy convergence curves for these datasets with 50 clients
are shown in Figure 3, with additional details in Section F.3.

Clearly, FedWBA shows an excellent convergence rate. It improves rapidly in the first 10 rounds
and then rises steadily until convergence. In contrast, some baseline models have slow convergence
rates, and others like FedAvg have performance fluctuations due to data heterogeneity. The better
convergence performance of FedWBA is attributed to the use of SVGD at the client side. SVGD
enables our method to better adapt to local data, efficiently capture the local posterior distribution,
and thereby improve the convergence efficiency in federated learning.
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6.5 Ablation Study

We perform ablation studies to assess key components of the model under the setting of 100 clients,
with all other configurations identical to those in Section 6.1, to deepen our understanding of the
model’s behavior. We consider (1) Iteration number in SVGD, (2) Kernel selection in SVGD,
and (3) Kernel bandwidth in SVGD. Additionally, (4) Number of labels per client, (5) Client
scheduling ratio per communication round, (6) AdaGrad parameters for SVGD learning rate
and (7) Kernel bandwidth in KDE to estimate the global prior are also investigated (Section F.4).
Extended analysis in Section F.5 quantifies the accuracy-ECE-communication efficiency trade-offs,
revealing practical implementation insights.

Table 2: An ablation study was conducted to inves-
tigate the impact of the number of SVGD iterations,
the choice of SVGD kernel, and kernel bandwidth
on prediction performance. The experiments are
performed using 100 clients on the MNIST and
FMNIST datasets.

MNIST FMNIST
Iteration Number in SVGD

Iteration
Number Acc(%) Iteration

Number Acc(%)

20 96.59 ± 0.01 40 91.49 ± 0.02
30 97.02 ± 0.03 50 91.62 ± 0.01
40 97.23 ± 0.01 60 91.65 ± 0.02

SVGD kernels
kernel Acc(%) bandwidth Acc(%)

sigmoid 93.90 ± 0.07 sigmoid 87.10± 0.02
Laplacian 97.12 ± 0.02 Laplacian 91.43± 0.02

polynomial 97.16 ± 0.01 polynomial 91.52± 0.05
RBF 97.23 ± 0.01 RBF 91.65 ± 0.02

Kernel Bandwidth in SVGD
bandwidth Acc(%) bandwidth Acc(%)

1 97.34 ± 0.05 1 91.71 ± 0.10
med 97.26 ± 0.02 med 91.65 ± 0.02
12 97.10 ± 0.03 12 91.22 ± 0.03

Iteration number in SVGD: As shown in Ta-
ble 2, on the MNIST and FMNIST datasets, ac-
curacy rises quickly with more local SVGD it-
erations, peaking before 30 and 50 iterations,
respectively. After these thresholds, the growth
of accuracy slows down. This shows that a
large number of local iterations are unneces-
sary, avoiding excessive local computational
pressure.

Kernel selection in SVGD: As shown in Ta-
ble 2, we systematically evaluate Laplacian, sig-
moid, and polynomial kernels under identical
hyperparameters. Laplacian and RBF both em-
ployed the median heuristic for bandwidth se-
lection, while the sigmoid kernel used scaling
factor α = 1 and bias c = 0, and the poly-
nomial kernel adopted exponent d = 2. This
ablation confirms the importance of kernel se-
lection, empirically favoring RBF kernels for
best performance.

Kernel Bandwidth in SVGD: As shown in Ta-
ble 2, the Gaussian kernel bandwidth signifi-
cantly affects SVGD performance. Small bandwidths yield high precision but cause unstable,
fluctuating approximations and oversensitivity to local noise. Large bandwidths favor global explo-
ration yet obscure local details, slowing convergence. Using the median heuristic effectively balances
these aspects, supporting both exploration and local refinement for stable, efficient convergence.

The findings guide configuring FedWBA’s Bayesian components, showing deliberate selection of
SVGD iterations, kernel type, and bandwidth is critical for optimal accuracy in FL.

7 Conclusions

In summary, we propose FedWBA, a novel PBFL method that simultaneously enhances local infer-
ence and global aggregation. At the client side, we employ particle-based variational inference for
nonparametric posterior representation. This allows clients to capture complex local posterior distri-
butions by leveraging the flexibility of particle-based methods, better approximating the posterior of
model parameters. At the server side, we introduce particle-based Wasserstein barycenter aggregation,
offering a more geometrically meaningful way to aggregate local client updates. Theoretically, we
establish convergence guarantees for FedWBA. Comprehensive experiments reveal that FedWBA
outperforms baselines in prediction accuracy, uncertainty calibration, and convergence rate.
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to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify all the training and test details necessary to understand the results.
See the Experiments section.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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material.
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Answer: [Yes]
Justification: We report the statistical significance of the experiments. In the tables presenting
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the main claims of the paper.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments are conducted on the server whose details are provided in the
paper. See the Experiments section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
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than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics.
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• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: This paper presents work whose goal is to advance the field of machine
learning. There are many potential societal consequences of our work, none of which we
feel must be specifically highlighted here.

Guidelines:

17

https://neurips.cc/public/EthicsGuidelines


• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
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to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
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models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All code, models, and datasets mentioned in the text are appropriately cited
with their original papers.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: New assets introduced in the paper, such as code, are well documented. The
documentation is provided alongside the assets in the supplementary material.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Comparison of Aggregation Methods

Figure 4 presents three different aggregation methods for three Gaussian distributions: parameter
averaging, mixture, and Wasserstein barycenter. Notably, both parameter averaging and the Wasser-
stein barycenter result in Gaussian distributions, while the mixture does not. The choice of Gaussian
distributions is motivated by the Gaussian assumption imposed by pFedBayes on the variational
parameter family, which serves as a representative baseline in our comparative analysis of Bayesian
federated learning approaches.
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Figure 4: Comparison of Three Aggregation Methods: Wasserstein Barycenter (WB), Parameter
Averaging (Avg), and Arithmetic Mean (Mixture).

B Proof of Equation (5)

Define Θ def
= diag(Θ⊤Θ) and Θk

def
= diag(Θ⊤

k Θk). Then, let Mk denote the squared Euclidean
distance matrix between the pairwise elements of Θ and Θk, which can be written as:

Mk = Θ1⊤
N + 1NΘ

⊤
k − 2ΘΘ⊤

k . (8)

Following this form of Mk, the Frobenius inner product between Mk and Tk is given by:

⟨Mk,Tk⟩F = tr(T⊤
kΘ1⊤

N ) + tr(T⊤
k 1NΘ

⊤
k )− 2tr(T⊤

k ΘΘ⊤
k ) (9)

=
1

N
tr(Θ) +

1

N
tr(Θ⊤

k )− 2tr(T⊤
k ΘΘ⊤

k ). (10)

By minimizing Equation (9), and taking into account that Θk is a constant, we obtain:

T∗
k = argmin

Tk∈T
⟨Mk,Tk⟩F = argmin

Tk∈T

1

N
tr(Θ)− 2 ⟨Θ,TkΘk⟩ . (11)

After obtain T∗
k, we can obtain the global prior as the Wasserstein barycenter of K local posteriors:

p̂
∗
(θ) = argmin

Θ

1

K

K∑
k=1

⟨Mk,T
∗
k⟩F

= argmin
Θ

1

K

K∑
k=1

{
∥Θdiag(N1/2)−T∗

kΘkdiag(N−1/2)∥2 − ∥T∗
kΘkdiag(N−1/2)∥2

}
.

(12)

Consequently, the optimal Θ∗ has an analytical solution

Θ∗ =
1

K

K∑
k=1

T∗
kΘkdiag(N−1). (13)
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C Pseudocode for Algorithm

Algorithm 1 FedWBA

Input: Size Z, kernels k(·, ·) and k̃(·, ·)
Initialize: local posterior particles {{θk,i}Ni=1}Kk=1; global prior particles {θi}Ni=1

for 〈communication round〉
K ← Server randomly samples a subset of clients of size Z;
Server broadcasts {θi}Ni=1 to each client k ∈ K;

[Local updates]
for client k in K do

Rebuild the continuous prior by Equation (6);
Update local posterior particles by Equation (2);

end for
Each client k ∈ K upload {θk,i}Ni=1 to the server;

[Server aggregates]
Update global prior particles by Equation (5).

D Proof of Theorem 5.3

Proof. The ELBO F (qk(θ)) can be expressed as the negative KL divergence: F (qk(θ)) =
−KL

(
qk(θ) ∥ p̃(θ | Dk)

)
, where p̃(θ | Dk) = p(Dk|θ)p(θ) is the unnormalized posterior distribu-

tion.

For iteration l on client k, the change in ELBO from iteration l to l + 1 is given by:

F (q
(l+1)
k (θ))− F (q

(l)
k (θ)) = KL

(
q
(l)
k (θ)∥p̃(θ | Dk)

)
−KL

(
q
(l+1)
k (θ)∥p̃(θ | Dk)

)
(i)
= KL

(
q
(l)
k (θ)∥p̃(θ | Dk)

)
−KL

(
q
(l)
k (θ)∥t−1

(
p̃(θ | Dk)

))
= E

q
(l)
k (θ)

[
− log p̃(θ | Dk) + log t−1

(
p̃(θ | Dk)

)]
(ii)
= E

q
(l)
k (θ)

[
− log p̃(θ | Dk)

+ log p̃
(
t(θ) | Dk

)
+ log

∣∣∣ det (∇θt(θ)
)∣∣∣].

(14)

(i) is obtained from the SVGD based particle transformation θ(l+1) = t(θ(l)) = θ(l) + ϵϕ(θ(l))
and the definition of KL divergence. (ii) follows from the change of variable formula for densities
t−1(p(θ)) = p(t(θ))| det

(
∇θt(θ)

)
|.

Applying a first-order Taylor expansion for θ:

log p̃
(
t(θ) | Dk

)
≈ log p̃(θ | Dk)+ϵ∇θ log p̃(θ | Dk)

⊤ϕk(θ)+
1

2
ϵ2∇2

θ log p̃(θ | Dk)ϕ
2
k(θ). (15)

According to Theorem 5.1, we have

log |det
(
∇θt(θ)

)
| =

D∑
i=1

log |ei| ≥
D∑
i=1

(1− e−1
i ) = tr

(
I −

(
∇θt(θ)

)−1
)
. (16)

Given that∇θt(θ) = I + ϵ∇θϕ(θ), and under Theorem 5.2, applying the Neumann expansion, we
get the approximation of (∇θt

(
θ)
)−1

:(
∇θt(θ)

)−1 ≈ I − ϵ∇θϕ(θ) +
(
ϵ∇θϕ(θ)

)2
. (17)

Then Equation (16) simplifies to:

log | det
(
∇θt(θ)

)
| ≥ tr

(
ϵ∇θϕ(θ)−

(
ϵ∇θϕ(θ)

)2)
. (18)
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Substituting Equations (15) and (18) into Equation (14), we obtain:

F (q
(l+1)
k (θ))− F (q

(l)
k (θ)) ≥ ϵE

q
(l)
k (θ)

[
tr
(
∇θ log p̃(θ | Dk)

⊤ϕk(θ) +∇θϕk(θ)
)]

− ϵ2E
q
(l)
k (θ)

[
tr
((
∇θϕk(θ)

)2 − 1

2
∇2

θ log p̃(θ | Dk)ϕ
2
k(θ)

)]
≥ ϵD

(
q
(l)
k (θ), p̃(θ | Dk)

)
− ϵ2E

q
(l)
k (θ)

[
tr
((
∇θϕk(θ)

)2 − 1

2
∇2

θ log p̃(θ | Dk)ϕ
2
k(θ)

)]
.

(19)

Given that the learning rate ϵ is sufficiently small, the second term becomes negligible. Therefore,
the lower bound of the ELBO increase per iteration is:

F (q
(l+1)
k (θ))− F (q

(l)
k (θ)) ≥ ϵD

(
q
(l)
k (θ), p̃(θ | Dk)

)
. (20)

E Proof of Theorem 5.9

E.1 Preliminaries

We begin by recalling the definition of Pseudo Hellinger distance and then state key lemmas that are
essential for the proof of Theorem 5.9.
Definition E.1. (Pseudo Hellinger distance) The pseudo Hellinger distance between probability
measures Pθ, Pθ′ is

h2
sk(θ,θ

′) =
1

s

s∑
i=1

h2
{
p(Dki | θ), p(Dki | θ′)

}
, (21)

where i represents the data index and h(p1, p2) =

[∫ {√
p1(y)−

√
p2(y)

}2

dy

]1/2
is the Hellinger

distance between two generic densities p1, p2.
Lemma E.2. (Generalization of [51] Theorem 1) Assume Theorem 5.6 holds. Then for any δ > 0,
there exist positive constants q1, q2 that depend on C1, C2, such that for all subsets Dk with
k = 1, . . . ,K and all sufficiently large s,

P
(S)
θ0

(
sup

hsk(θ,θ0)≥δ

s∏
i=1

p(Dki|θ)
p(Dki|θ0)

≥ exp(−q1sδ2)

)
≤ 4 exp(−q2sδ2).

Lemma E.3. Assume Theorem 5.6 holds. Then for any δ > 0, there exist positive constants r1, r2
that depend on κ, cπ , such that for every subset Dk (k = 1, . . . ,K), for any t ≥ η2αs ,

P
(S)
θ0

(∫
Ξ

s∏
i=1

p(Dki|θ)
p(Dki|θ0)

Π(dθ) ≤ exp(−r1St)

)
≤ exp(−r2st).

Lemma E.4. Let ν denote the W2 barycenter of N measures ν1, . . . ,νN in P2(Ξ). Then for any
θ0 ∈ Ξ, the following inequality holds:

W2(ν, δθ0) ≤
1

N

N∑
j=1

W2(νj , δθ0).

This lemma establishes a relationship between the barycenter and the distances from each individual
measure to a fixed point θ0. The proofs of Theorems E.2 to E.4 can be found in [50].
Lemma E.5. Suppose that Theorem 5.4-Theorem 5.8 hold for the k-th subset posterior p(θ|Dk)
with k = 1, . . . ,K. Then there exists a constant C3 that depends on CL, C1, C2, κ, cπ and does not
depend on k, such that as s→∞,

EPθ0
W 2

2

(
p(θ|Dk), δθ0(·)

)
≤ C3

(
log2 s

s

) 1
α

.
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Proof. Let ηs = ( s
log2s )

− 1
2α . Due to the compactness of Ξ in assumption Theorem 5.4, there exists a

large finite constant M0 such that ρ(θ,θ0) ≤M0. We begin with a decomposition of the W2 distance
from the k-th subset posterior p(θ|Dk) to the delta measure at the true parameter θ0:

EPθ0
W 2

2

(
p(θ|Dk), δθ0

(·)
)
= EPθ0

∫
Ξ

ρ2(θ,θ0)p(dθ|Dk)

≤ EPθ0

∫
{θ:ρ(θ,θ0)≤C4ηs}

ρ2(θ,θ0)p(dθ|Dk) + EPθ0

∫
{θ:ρ(θ,θ0)>C4ηs}

ρ2(θ,θ0)p(dθ|Dk)

≤ (C4ηs)
2 +M2

0EPθ0
p
(
ρ(θ,θ0) > C4ηs|Dk

)
.

(22)

We will choose the constant C4 as C4 = ( 2r1Kq1CL
)

1
2α , where CL, q1, r1 are the constants in Theorem 5.4,

Theorem 5.5, Theorem E.2 and Theorem E.3. Using Theorem 5.5, we can further replace the ρ metric
by the pseudo Hellinger distance:

p
(
θ ∈ Ξ : ρ(θ,θ0) > C4ηs|Dk

)
≤ p
(
θ ∈ Ξ : hsk(Pθ,k, Pθ0,k) >

√
CL(C4ηs)

α|Dk

)
=

∫
{θ∈Ξ:hsk(θ,θ0)>

√
2r1K
q1

ηα
s }

∏s
i=1

[
p(Dki|θ)
p(Dki|θ0)

]
Π(dθ)∫

Ξ

∏s
i=1

[
p(Dki|θ)
p(Dki|θ0)

]
Π(dθ)

.
(23)

For the denominator in Equation (22), by Theorem 5.7 and Theorem E.3, when s is sufficiently large,
with probability at least 1− exp(−r2sη2αs )∫

Ξ

s∏
i=1

p(Dki|θ)
p(Dki|θ0)

Π(dθ) > exp(−r1Sη2αs ). (24)

For the numerator in Equation (23), by Theorem 5.6 and Theorem E.2, setting δ =
√

2r1K
q1

ηαs , we

get that with probability at least 1− 4 exp
(
− 2r1q2

q1
Sη2αs

)
,

sup
{θ∈Ξ:hsk(θ,θ0)≥

√
2r1K
q1

ηα
s }

s∏
i=1

[
p(Dki|θ)
p(Dki|θ0)

]
≤ exp(−2r1Sη2αs ). (25)

Therefore, based on Equations (23) to (25), with probability at least 1 − 4 exp
(
− 2r1q2

q1
Sη2αs

)
−

exp(−r2sη2αs ),

p(θ ∈ Ξ : ρ(θ,θ0) > C4ηs | Dk) ≤ exp(−2r1Sη2αs + r1Sη
2α
s ) ≤ exp(−r1Sη2αs ). (26)

Let Aηs be the event
{
θ ∈ Ξ : p(θ ∈ Ξ : ρ(θ,θ0) > C4ηs | Dk) ≤ exp(−r1Sη2αs )

}
. Then we can

bound the second term in Equation (22) as follows:

EPθ0
p
(
ρ(θ,θ0) > C4ηs | Dk

)
≤ EPθ0

[
I(Aηs

)p
(
ρ(θ,θ0) > C4ηs | Dk

)]
+ EPθ0

[
I(Ac

ηs
)p
(
ρ(θ,θ0) > C4ηs | Dk

)]
≤ exp(−r1Sη2αs ) + 4 exp

(
−2r1q2

q1
Sη2αs

)
+ exp(−r2sη2αs )

≤ 6 exp(−C5sη
2α
s ),

(27)

for C5 = min(r1, r2,
2r1q2
q1

), as clearly the second term is dominating the other two given m ≲ n.
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Therefore, for Equation (22), since ηs = (s/ log2 s)
− 1

2α , as s→∞, an explicit bound will be

EPθ0
W 2

2

(
p(θ|Dk), δθ0

(·)
)
≤ C2

4

log
2
α s

s
1
α

+ 6M2
0 exp(−c2 log2 s)

≤ C2
4

log
2
α s

s
1
α

+
1

s1+
1
α

≤ C
log

2
α s

s
1
α

,

(28)

as s becomes sufficiently large, where the constant C depends on α, C4, C5, which further depends
on q1, q2, r1, r2, CL. Since q1, q2 in Theorem E.2 and r1, r2 in Theorem E.3 depend on C1, C2, κ,
cπ , it follows that C3 depends on CL, C1, C2, κ, cπ .

E.2 Main Proof

Now we give the full proof of Theorem 5.9.

Proof. For notational simplicity in the subsequent derivations, we abbreviate the Wasserstein barycen-
ter distribution p(θ|Dk) as p(θ). Following Theorem E.5, we have:

P
(S)
θ0

W2

(
p(θ), δθ0(·)

)
>

√
C
log

2
α s

s
1
α


≤ P

(S)
θ0

 1

K

K∑
k=1

W2

(
p(θ|Dk), δθ0

(·)
)
>

√
C
log

2
α s

s
1
α

 .

(29)

Next, applying Markov’s inequality and using the relation between l1 and l2 norms, we obtain:
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=
C1

C
, (33)

where the second step inequality follows from the fact that for nonnegative real-valued random vari-
ables X1, · · · , Xn, ( 1n

∑n
i=1 Xi)

2 ≤ 1
n

∑n
i=1 X

2
i , and the third step inequality uses the previously

obtained upper bound EPθ0
W 2

2

(
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)
≤ C1

log
2
α s

s
1
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.

Finally, combing these results, we conclude:

W2

(
p(θ), δθ0(·)

)
= Op

(√ log
2
α s

s
1
α

)
. (34)

F More Experimental Results

In this section, we provide more experimental results to demonstrate the performance of our method
compared to others.
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F.1 Performance of Global Model

To validate the performance of the global model, we compare with FedAvg, FedProx, and SCAFFOLD
on MNIST, using settings identical to Section 6.1. The results show a highly comparable performance,
demonstrating the validity of the global model as a prior regularizer.

Table 3: Global model performance with best results bolded.

DATASET METHOD 50 CLIENTS 100 CLIENTS 200 CLIENTS

MNIST

FEDAVG 91.98± 0.07 91.76± 0.08 90.94 ± 0.06
FEDPROX 92.12± 0.08 92.04± 0.11 90.82± 0.16
SCAFFOLD 92.90 ± 0.07 92.14 ± 0.08 90.85± 0.11

OURS 92.02± 0.02 91.95± 0.03 89.90± 0.03

F.2 Performance of Uncertainty Quantification

In this section, we present the performance of the remaining six algorithms in uncertainty quantifica-
tion, as shown in Figure 5.
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Figure 5: Reliability diagrams of the six methods on CIFAR-100. The perfect calibration is plotted as
a red diagonal line, and the actual results are presented as bar charts. The gap between the top of each
bar and the red line represents the calibration error. The ECE is calculated and placed in the top-left
corner of the figure. Among them, the method with the highest ECE value has the worst calibration
performance.

Our uncertainty quantification experiments across MNIST, FMNIST, and CIFAR-10 demonstrate that
our method achieves state-of-the-art performance in ECE, outperforming existing baselines on all
benchmarks, as presented in Table 4. This consistent superiority highlights enhanced generalization
and calibration capabilities under varying data distributions and task complexities.

F.3 Convergence Rate

This section presents a comparison of algorithm convergence across MNIST, FMNIST, CIFAR-10,
and CIFAR-100 with 100 and 200 clients (as depicted in Figure 6 for 100 clients and Figure 7 for 200
clients). Similar to observations in prior client configurations, FedWBA exhibits rapid test accuracy
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Table 4: ECE of different methods on MNIST, FMNIST and CIFAR-10 with 50 clients. Optimal
results are bolded.

method Dataset

MNIST FMNIST CIFAR-10

FedAvg 0.0449 0.0211 0.0394
FedProx 0.0147 0.0308 0.0264

SCAFFOLD 0.0424 0.0343 0.1002

FedPer 0.0061 0.0082 0.0284
perFedAvg 0.0213 0.0258 0.0663
pFedME 0.0097 0.0424 0.0549

pFedBayes 0.0158 0.0132 0.0420
pFedVEM 0.0130 0.0107 0.0476
pFedGP 0.0217 0.0193 0.0245

Ours 0.0014 0.0078 0.0132

growth within the first 10 communication rounds across all datasets, followed by gradual refinement
and eventual convergence. This consistent pattern across diverse datasets and client scales highlights
the approach’s effectiveness and stability in federated learning, demonstrating robust adaptability to
varying data distribution complexities.
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Figure 6: Comparison of convergence rates of different methods on MNIST, FMNIST, CIFAR-10,
and CIFAR-100 with 100 clients.
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Figure 7: Comparison of convergence rates of different methods on MNIST, FMNIST, CIFAR-10,
and CIFAR-100 with 200 clients.

F.4 Ablation Study

In this section, we conduct ablation studies on four key components: (1) Number of labels per client,
(2) Client scheduling ratio per communication round, (3) two AdaGrad parameters for SVGD
learning rate, and (4) Kernel bandwidth in KDE to estimate the global prior. In the optimization
algorithm, the AdaGrad update rule is:

θ(l+1) = θ(l) − η√
Gl + λ

⊙ gl,

where Gl is the accumulated sum of squared gradients up to the l-th iteration, gl is the gradient
vector at the l-th iteration, η is the global learning rate determining step-size, and λ is a smoothing
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term that prevents the denominator from being zero and enhances algorithm stability, which is crucial
for SVGD learning rate adjustment.

Number of labels per client: To validate the method’s generality across varying client problem
complexities, we evaluate MNIST and FMNIST with 2, 5, and 10 labels per client—specifically, we
construct client heterogeneity in terms of label distribution through this varying number of labels per
client, simulating real-world scenarios where clients only hold partial and unequal label information.
Smaller label counts indicate simpler client tasks. As shown in Table 5, accuracy decreases with
increasing labels, aligning with expected difficulty trends. Despite performance variation with
task complexity, FedWBA maintains stable convergence and high accuracy at each label setting,
demonstrating robust adaptability to diverse client-side problem scales.

Client scheduling ratio per communication round: We conduct experiments on MNIST and
FMNIST with client scheduling ratios of 0.1, 0.2, and 0.5 per communication round. Results show
that a higher scheduling ratio correlates with faster convergence of the global prior and higher client-
side accuracy—this is attributed to more client updates contributing to the global model optimization
at each round. However, a scheduling ratio of 0.5 is impractical in real-world scenarios, as it incurs
excessive communication bandwidth consumption and computational burdens on the server. Thus, we
adopt a scheduling ratio of 0.2 for experiments in Section 6.1 to balance performance and practicality.

Impact of η and λ: A small global learning rate η leads to extremely slow convergence, requiring
significantly more iterations to reach or approach the optimal solution. Conversely, a large η may
cause the model to skip the optimal region in the parameter space due to overly large step sizes. A
small λ can result in training fluctuations, while a large λ weakens gradient accumulation, potentially
impeding convergence.

Bandwidth of kernel in KDE: The influence of the bandwidth in KDE is relatively minor. In the
context of our experiments, across different datasets and model configurations, varying the KDE
bandwidth within a reasonable range did not lead to substantial changes in the model’s performance
metrics.

Table 5: Ablation studies on the impact of the number of labels per client, client scheduling ratio per
communication round, η, λ and KDE bandwidths on prediction performance, conducted with 100
clients on MNIST and FMNIST.

MNIST FMNIST
NUMBER OF LABELS PER CLIENT

LABELS ACC(%) LABELS ACC(%)

2 99.26 ± 0.01 2 99.16 ± 0.06
5 97.23 ± 0.01 5 91.65 ± 0.02

10 95.37 ± 0.08 10 83.67 ± 0.07

CLIENT SCHEDULING RATIO PER COMMUNICATION ROUND

SCHEDULING RATIO ACC(%) SCHEDULING RATI ACC(%)

0.1 96.78± 0.02 0.1 90.77± 0.04
0.2 97.57± 0.02 0.2 91.65± 0.02
0.5 97.71 ± 0.03 0.5 91.73 ± 0.01

GLOBAL LEARNING RATE OF ADAGRAD IN SVGD (η)
η ACC(%) η ACC(%)

0.01 97.23 ± 0.01 0.002 91.55 ± 0.02
0.02 96.53 ± 0.01 0.003 91.63 ± 0.02
0.03 95.59 ± 0.08 0.004 91.65 ± 0.02

λ OF ADAGRAD FOR SVGD
λ ACC(%) ϵ ACC(%)

10−7 97.22 ± 0.01 10−7 91.64 ± 0.01
10−8 97.26 ± 0.02 10−8 91.67 ± 0.01
10−9 97.24 ± 0.01 10−9 91.66 ± 0.01
10−10 97.23 ± 0.01 10−10 91.65 ± 0.00

BANDWIDTH OF KDE
BANDWIDTH ACC(%) BANDWIDTH ACC(%)

0.30 97.25 ± 0.02 0.30 91.67 ± 0.01
0.55 97.26 ± 0.02 0.55 91.67 ± 0.01
0.70 97.24 ± 0.01 0.70 91.66 ± 0.01
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F.5 Communication Cost

First, we examine the relationship between the number of particles and communication cost. As
stated in Section 4.2, with the increase in the number of particles N , the empirical distribution of
particles asymptotically converges to the optimal variational distribution in the corresponding RKHS.
In Table 6, we report the relationships among the number of particles, the size of uploaded data,
and the prediction accuracy. Here, the unit of data size is megabyte (MB). Increasing the number of
particles leads to a slight improvement in accuracy but imposes a communication burden. Therefore,
10 particles can strike a balance between communication volume and performance.

Table 6: Ablation study on the impact of particle count on communication overhead and prediction
accuracy, conducted with 100 clients on MNIST and CIFAR-10.

DATASET
NUMBER OF
PARTICLES

COMM.(M) ACC(%↑)

MNIST

5 1.52 MB 96.63 ± 0.02
10 3.03 MB 96.71 ± 0.03
20 6.07 MB 96.82 ± 0.01
50 15.17 MB 96.86 ± 0.01

CIFAR-10

5 2.31 MB 70.71 ± 0.10
10 4.62 MB 72.00 ± 0.14
20 9.25 MB 72.14± 0.09
50 23.11 MB 72.15 ± 0.01

While using SVGD to approximate the posterior introduces moderate communication overhead due
to particle updates, we also consider replacing Bayesian layers with standard frequentist layers to
reduce costs. With 5 labels per client, we validate this trade-off using a 5-layer CNN for CIFAR-10
prediction, analyzing how the number of Bayesian layers affects communication cost, test accuracy,
and ECE. When the number of Bayesian layers is reduced to 0, the method effectively reduces to
FedAvg—a common non-Bayesian federated learning baseline—providing a direct comparison point.

Table 7: Impact of number of Bayesian layers on communication cost, test Accuracy, and ECE.

THE NUMBER OF BAYESIAN LAYERS COMM.(M) ACC(%↑) ECE(↓)
5 23.99 MB 76.85 ± 0.02 0.0376
4 16.08 MB 76.12 ± 0.02 0.0582
1 2.40 MB 68.84 ± 0.15 0.0853
0 2.38 MB 62.53 ± 0.44 0.1256
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Figure 8: Reliability diagrams for different numbers of Bayesian layers.

As shown in Table 7 and Figure 8, decreasing the number of Bayesian layers lowers communication
volume but leads to a noticeable drop in accuracy and an increase in ECE. This indicates that
although Bayesian layers impose higher communication costs, they are critical for maintaining precise
uncertainty quantification and prediction reliability. Specifically, our method’s low ECE—even
at higher communication costs—highlights its suitability for high-risk scenarios where accurate
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uncertainty assessment is paramount, justifying the additional overhead. This trade-off underscores
the value of our approach in applications requiring both performance and rigorous uncertainty
quantification.

F.6 Additional Experiments

To further verify the scalability of our method on complex datasets and large-scale networks, we also
conduct experiments on Tiny-ImageNet (a reduced version of ImageNet) using the ResNet18 model.
Specifically, the experimental setup includes 50 clients (each with 20 distinct classes to simulate
non-iid data distribution) and runs for 100 communication rounds. These supplementary experiments
further demonstrate the superiority of our method in such complex data scenarios and advanced
network setups.

Table 8: Test accuracy (% ± SEM) over 50 clients on Tiny-ImageNet. Best results are bolded.

DATASET METHOD ACC(%↑) ECE(↓)

TINY-IMAGENET

FEDAVG 27.14± 0.12 0.3170
FEDPER 35.43± 0.19 0.2890

FEDPROX 24.97± 0.25 0.2515
SCAFFOLD 31.37± 0.22 0.0698

PFEDME 36.24± 0.14 0.0631
PERAVG 34.86± 0.20 0.1774

OURS 37.91 ± 0.07 0.0421

G Limitations and Future Work

FedWBA’s key limitation stems from the computational complexity of SVGD for nonparametric
posterior approximation at clients. While a fixed particle count balances efficiency, complexity rises
significantly with higher-dimensional models. To address this, future work could explore lightweight
Bayesian inference techniques, such as sparse particle approximations, to reduce computational
overhead while retaining nonparametric flexibility.
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