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Abstract

Score matching estimators have gained widespread attention in recent years partly
because they are free from calculating the integral of normalizing constant, thereby
addressing the computational challenges in maximum likelihood estimation (MLE).
Some existing works have proposed score matching estimators for point processes.
However, this work demonstrates that the incompleteness of the estimators pro-
posed in those works renders them applicable only to specific problems, and they
fail for more general point processes. To address this issue, this work introduces
the weighted score matching estimator to point processes. Theoretically, we prove
the consistency of our estimator and establish its rate of convergence. Experimen-
tal results indicate that our estimator accurately estimates model parameters on
synthetic data and yields results consistent with MLE on real data. In contrast,
existing score matching estimators fail to perform effectively. Codes are publicly
available at https://github.com/KenCao2007/WSM_TPP.

1 Introduction

Point processes are a class of statistical models used to characterize event occurrences. Typical models
include Poisson processes [9] and Hawkes processes [3]. Their applications span various fields such as
seismology [16; 17], finance [1; 4], criminology [15], and neuroscience [11; 26]. In the field of point
processes, maximum likelihood estimation (MLE) has been a conventional estimator. However, MLE
has an inherent limitation: it requires the computation of the normalizing constant, which corresponds
to the intensity integral term in the likelihood. Except for simple cases, calculating the intensity
integral analytically is generally infeasible. This necessitates the use of numerical integration methods
like Monte Carlo or quadrature for approximating the computation. This introduces approximation
errors, and more importantly, for high-dimensional problems, numerical integration encounters the
curse of dimensionality, rendering training infeasible.

To address this issue, prior research has introduced the concept of score matching (SM) [5] to the field
of point processes. For instance, [18] derived the application of SM to the estimation of traditional
statistical Poisson processes. Furthermore, [24] extended the use of SM to the estimation of deep
covariate spatio-temporal point processes. [10] also generalized the application of SM to Hawkes
processes. These works have greatly advanced the utilization of SM for point processes. However, in
practical applications, we have found that these estimators only work for specific point processes.
For more general cases, these estimators cannot accurately estimate model parameters, even for
some simple statistical point processes. One of the core contribution of this work is to theoretically
demonstrate the incompleteness of the estimators proposed in the aforementioned studies.
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The incompleteness of the estimators in the aforementioned studies stems from the transition from
explicit SM to implicit SM. The explicit SM estimates model parameters by minimizing the expected
distance between the gradient of the log-density of the model and the gradient of the log-density of
the data. However, we cannot directly minimize the above objective function since it depends on
the unknown data distribution. To facilitate solving, we need to convert the above explicit SM to
implicit SM by using a trick of integration by parts, provided that some regularity conditions are
satisfied [5]. In [18; 24; 10], they assume that the required regularity conditions are satisfied in their
point process models and directly employ the implicit SM objective. However, as demonstrated in
Section 3, the required regularity conditions cannot be met for general point processes. This implies
that the concise implicit SM objectives (Equation (2) in [18], Equation (10) in [24], Equation (4) in
[10]) are incomplete, and they cannot accurately estimate parameters for general point processes.

To address this issue, this work introduces a (autoregressive) weighted score matching (WSM)
estimator that can be applied to more general point processes. WSM eliminates the intractable terms
in SM objective by adding a weight function that takes zero at the boundary of the integration region.
Compared to previous work on WSM [6; 22; 12], we are the first work to apply WSM on a stochastic
process where the dimension NT is also random. This stochasticity in dimensionality poses greater
challenges to the derivation, requiring special treatment to address this issue.

Specifically, we make following contributions: (1) We theoretically demonstrate that implicit (autore-
gressive) SM estimators in [18; 24; 10] are incomplete because the required regularity conditions
cannot be satisfied for general point processes. (2) To address this issue, we propose a (autoregres-
sive) WSM estimator that is applicable to general point processes. Theoretically, we establish its
consistency and convergence rate. (3) In experiments, we confirm that on synthetic data, (autoregres-
sive) WSM successfully recovers the ground-truth parameters; on real data, (autoregressive) WSM
estimates results consistent with MLE; while existing (autoregressive) SM estimator fails in both
scenarios.

2 Preliminaries

Now we provide knowledge on Poisson and Hawkes processes and (autoregressive) score matching.

2.1 Poisson Process and Hawkes Process

The Poisson process [9] is a stochastic point process that models the occurrence of events over a
time window [0, T ]. A trajectory from Poisson process can be represented as an ordered sequence
T = (t1, . . . , tNT

) where Nt = max{n : tn ≤ t, t ∈ [0, T ]} is the corresponding counting process
and thusNT is the random number of events in [0, T ]. The inhomogeneous Poisson process has a time-
varying intensity λ(t) representing the instantaneous rate of event occurrence at t. Mathematically,
the intensity function is defined as λ(t) = limδt→0 E[Nt+δt − Nt]/δt. The probability density
function of Poisson process is:

p(T ) =

NT∏
n=1

λ(tn) exp

(
−
∫ T

0

λ(t)dt

)
. (1)

The Hawkes process [3] is a self-excitation point process where the occurrence of an event increases
the likelihood of more events in the future. A trajectory from Hawkes process is similarly represented
as T = (t1, . . . , tNT

) on [0, T ]. The conditional intensity function of Hawkes process, representing
the instantaneous rate of event occurrence at t given the history up to but not including t, is:

λ∗(t) = λ(t|Ft−) = µ(t) +
∑
tj<t

g(t− tj), (2)

where µ(t) is the baseline intensity, g(·) is the triggering kernel representing the self-excitation
effect, the summation expresses the accumulative excitation from all past events, Ft− is the historical
information up to but not including t. λ∗(t) means the intensity is dependent on the history.

Poisson process assumes the independence of event occurrences, while Hawkes process extends it by
introducing an autoregressive structure, making subsequent events dependent on prior events. Given
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the history Ftn = (t1, . . . , tn), the conditional probability density of (n+ 1)-th event at t > tn is:

p(t|Ftn) = λ∗(t) exp

(
−
∫ t

tn

λ∗(τ)dτ

)
. (3)

Here, we introduce the definition of the univariate Hawkes process. However, multivariate Hawkes
processes also exist. For ease of notation, we use the univariate case for illustration, but we also
provide solutions for the multivariate case.

2.2 Score Matching

MLE is a classic estimator that minimizes Kullback–Leibler divergence between a model distribution
and data distribution. However, a drawback is the intractable computation of the normalizing constant.
Approximating it through numerical integration can be computationally demanding. In contrast,
SM [5] offers an alternative by minimizing Fisher divergence between model and data distributions:

LSM(θ) =
1

2
Ep(x)∥∇x log p(x)−∇x log pθ(x)∥2,

where p(x) represents the data distribution, pθ(x) is the parameterized model distribution, the
gradient of the log-density is called the score, and ∥ ·∥ represents a suitable norm, such as the ℓ2 norm.
Minimizing the Fisher divergence above provides the parameter estimate. The advantage of SM lies
in its ability to bypass the computation of the normalizing constant since the score no longer contains
this constant: pθ(x) = 1

Z(θ) p̃θ(x) where Z(θ) =
∫
p̃θ(x)dx, ∇x log pθ(x) = ∇x log p̃θ(x).

Under certain conditions, we can use integration by parts to replace the explicit SM objective, which
involves an unknown distribution p(x), with an equivalent implicit one,

JSM(θ) = Ep(x)

[
1

2
∥∇x log pθ(x)∥2 + Tr

(
∇2

x log pθ(x)
)]
. (4)

2.3 Autoregressive Score Matching

An autoregressive model defines a probability density p(x) as a product of conditionals using the chain
rule: p(x) =

∏N
n=1 p(xn|x<n), where xn is the n-th entry and x<n denotes the entries with indices

smaller than n. The original SM is not suitable for autoregressive models because the autoregressive
structure introduces challenges in gradient computation in Equation (4). To address this issue, [13]
proposed autoregressive score matching (ASM). Unlike SM, which minimizes the Fisher divergence
between the joint distributions of the model pθ(x) and the data p(x), ASM minimizes the Fisher
divergence between the conditionals of the model pθ(xn|x<n) and the data p(xn|x<n):

LASM(θ) =
1

2

N∑
n=1

Ep(x≤n)

(
∂ log p(xn|x<n)

∂xn
− ∂ log pθ(xn|x<n)

∂xn

)2

.

Similarly, the above explicit ASM objective involves an unknown distribution p(xn|x<n). Under
specific regularity conditions, we can apply integration by parts to derive an implicit ASM objective:

JASM(θ) =

N∑
n=1

Ep(x≤n)

[
1

2

(
∂ log pθ(xn|x<n)

∂xn

)2

+
∂2 log pθ(xn|x<n)

∂x2n

]
. (5)

3 Score Matching for Poisson Process

We analyze the application of SM for Poisson process and its failure in achieving consistent estimation.
Subsequently, we propose a provably consistent WSM estimator.

3.1 Failure of Score Matching for Poisson Process

Consider a Poisson process T = (t1, . . . , tNT
) on [0, T ]. Let p(T ) represent the data distribution,

which is uniquely associated with an intensity function λ(t). Let pθ(T ) represent the parameterized
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model distribution, which is uniquely associated with a parameterized intensity function λθ(t). In the
following, we denote the score as ψ(tn) = ∂

∂tn
log p(T ).

Previous works [18; 24] have both attempted to apply SM to the Poisson process:

LSM(θ) =
1

2
Ep(T )

[
NT∑
n=1

(ψ(tn)− ψθ(tn))
2

]
. (6)

In order for SM to be practical, [18; 24] assumed that specific regularity conditions are satisfied.
Therefore, they employed an implicit SM objective similar to Equation (4):

JSM(θ) = Ep(T )

[
NT∑
n=1

1

2
ψ2
θ(tn) +

∂ψ(tn)

∂tn

]
. (7)

In practical applications, we have found that the above estimator works only for specific Poisson
processes and fails for more general Poisson processes. The reason for its failure lies in the fact that,
for more general Poisson processes, the specific regularity conditions cannot be satisfied.

Such conditions require the probability density function of the random variable is zero when it
approaches infinity in any of its dimensions. However, for point processes, such requirement is not
satisfied, because the random variable in point process T = (t1, . . . , tNT

) is not of fixed dimension
and takes values in a subset of RNT

+ . Therefore, for general Poisson processes, we cannot derive the
implicit SM in Equation (7) based on the explicit SM in Equation (6).

Proposition 3.1. Assume that all functions and expectations in LSM(θ) and JSM(θ) are well defined,
we have,

LSM(θ) =JSM(θ) + const −
∞∑

N=1

∫
p(t1, . . . , tN )

∂ log pθ(t1, . . . , tN )

∂t1

∣∣∣
t1=0

dT2:N

+

∞∑
N=1

∫
p(t1, . . . , tN )

∂ log pθ(t1, . . . , tN )

∂tN

∣∣∣
tN=T

dT1:N−1.

(8)

Therefore, LSM(θ) is equivalent to JSM(θ) if and only if the sum of the last two terms is a constant
not containing θ.

For specific Poisson processes, the sum of the last two terms can be zero. However, for more general
cases, this sum contains θ. This implies that JSM fails for general Poisson processes.

3.2 Weighted Score Matching

To address the situation where SM fails, inspired by [6; 22], we introduce the WSM for Poisson
process. The core idea of WSM is to eliminate the two intractable terms by adding a weight function
that takes zero at the boundary of the integration region. The weight function is designed to be a
vector-valued function h : RNT

+ → RNT
+ with the n-th element denoted as hn(T ). Here, we present

the conditions that a valid weight function should satisfy:

lim
tn→tn+1

p(T )ψθ(tn)hn(T ) = 0, lim
tn→tn−1

p(T )ψθ(tn)hn(T ) = 0, ∀n ∈ [NT ],

E[ψ2
θ(tn)hn(T )] <∞, E[ψθ(tn)

∂hn(T )

∂tn
] <∞,∀n ∈ [NT ].

(9)

One can verify that such weight functions are easy to find for most p(T ) and ψθ(tn). With a valid
weight function h, the explicit WSM objective can be defined as:

LWSM(θ) =
1

2
Ep(T )

[
NT∑
n=1

(ψ(tn)− ψθ(tn))
2hn(T )

]
. (10)

The introduction of the weight function allows control over the values of the integrand at the
boundaries of the integration domain, thereby eliminating the last two terms in Equation (8).
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Theorem 3.2. Assume the true intensity is in the family of the model intensity, denoted as λ(t) =
λθ∗(t), where θ∗ ∈ Θ. We further assume that ∂ log λθ1

(t)

∂t =
∂ log λθ2

(t)

∂t a.s. gives θ1 = θ2. Then the
unique minimizer of LWSM(θ) is θ∗.

The explicit WSM objective is not practical as it depends on the unknown data distribution p(T ), so
we further derive the implicit WSM objective which is tractable.
Theorem 3.3. Assume that all functions and expectations in LWSM(θ) and JWSM(θ) are well defined,
Equation (9) is satisfied, we have,

LWSM(θ) = JWSM(θ) + const,

JWSM(θ) = Ep(T )

[
NT∑
n=1

1

2
ψ2
θ(tn)hn(T ) +

∂ψθ(tn)

∂tn
hn(T ) + ψθ(tn)

∂hn(T )

∂tn

]
. (11)

For general Poisson processes, Equation (11) is always valid with a suitable weight function. Thus,
we do not need to worry about the issues of failure that may arise when using Equation (7).

4 Autoregressive Score Matching for Hawkes Processes

Similarly, we analyze the usage of ASM for Hawkes processes and its failure in achieving consistent
estimation. Subsequently, we propose a provably consistent autoregressive WSM (AWSM) estimator.

4.1 Failure of Autoregressive Score Matching for Hawkes Process

The original SM, even when adjusted by a weight function, is not suitable for point processes with
autoregressive structures, such as Hawkes process. Because in such cases, directly calculating the
score still includes the intensity integral, which is precisely what the use of SM aims to avoid.
Therefore, an ASM method is proposed for parameter estimation for Hawkes process in [10].

Consider a Hawkes process T = (t1, . . . , tNT
) on [0, T ] with the underlying conditional probability

density of tn denoted as p(tn|Ftn−1
). The parameterized conditional probability density model

of tn is pθ(tn|Ftn−1
). We denote the conditional score as ψ(tn|Ftn−1

) = ∂
∂tn

log p(tn|Ftn−1
) =

∂
∂tn

log λ(tn|Ftn−1)− λ(tn|Ftn−1), n = 1, . . . NT . An explicit ASM objective is defined as:

LASM(θ) =
1

2
Ep(T )

[
NT∑
n=1

(ψ(tn|Ftn−1
)− ψθ(tn|Ftn−1

))2

]
. (12)

Similarly, to make ASM practical, [10] assumed that specific regularity conditions are satisfied.
Therefore, an implicit ASM is proposed accordingly:

JASM(θ) = Ep(T )

[
NT∑
n=1

1

2
ψ2
θ(tn|Ftn−1

) +
∂ψθ(tn|Ftn−1

)

∂tn

]
. (13)

However, the same issue as in the Poisson process arises here. The regularity conditions required to
eliminate the unknown data distribution do not hold. Therefore, we cannot derive the implicit ASM
in Equation (13) based on the explicit ASM in Equation (12).
Proposition 4.1. Assume that all functions and expectations in LASM(θ) and JASM(θ) are well defined,
we have,

LASM(θ) =JASM(θ) + const +
∞∑

n=1

∫
p(T:n−1)p(tn|Ftn−1

)ψθ(tn|Ftn−1
)
∣∣∣
tn=T

dT:n−1

−
∞∑

n=1

∫
p(T:n−1)p(tn|Ftn−1)ψθ(tn|Ftn−1)

∣∣∣
tn=tn−1

dT:n−1.

(14)

Therefore, LASM(θ) is equivalent to JASM(θ) if and only if the sum of last two terms is a constant not
containing θ.

Generally speaking, for most Hawkes processes, the sum of the last two terms in Equation (14) still
contains θ, even for a common Hawkes process with an exponential decay triggering kernel. We
illustrate this example in Section 6.2. This implies that JASM fails for general Hawkes processes.
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4.2 Autoregressive Weighted Score Matching

Similarly, to address the situation where ASM fails, we introduce the AWSM for Hawkes process.
We present the conditions that a valid weight function h should satisfy :

lim
tn→T

p(T1:n)ψθ(tn|Ftn−1
)hn(T ) = 0, lim

tn→tn−1

p(T1:n)ψθ(tn|Ftn−1
)hn(T ) = 0, ∀n ∈ [NT ],

E[ψ2
θ(tn|Ftn−1

)hn(T )] <∞, E[ψθ(tn|Ftn−1
)
∂hn(T )

∂tn
] <∞,∀n ∈ [NT ]. (15)

With a valid weight function h, the explicit AWSM objective can be defined as:

LAWSM(θ) =
1

2
Ep(T )

[
NT∑
n=1

(ψ(tn|Ftn−1
)− ψθ(tn|Ftn−1

))2hn(T )

]
. (16)

Theorem 4.2. Assume the true conditional density is in the family of the model conditional density,
denoted as p(tn|Ftn−1) = pθ∗(tn|Ftn−1), where θ∗ ∈ Θ. We further assume that pθ1(tn|Ftn−1) =
pθ2(tn|Ftn−1) a.e. gives θ1 = θ2. Then the unique minimizer of LAWSM(θ) is θ∗.

The explicit AWSM objective is not practical as it depends on the unknown data distribution
p(tn|Ftn−1

), so we further derive the implicit AWSM objective which is tractable.
Theorem 4.3. Assume that all functions and expectations in LAWSM(θ) and JAWSM(θ) are well defined,
Equation (15) are satisfied, we have,

LAWSM(θ) = JAWSM(θ) + const,

JAWSM(θ) = Ep(T )

[
NT∑
n=1

1

2
ψ2
θ(tn|Ftn−1)hn(T ) +

∂ψθ(tn|Ftn−1
)

∂tn
hn(T ) + ψθ(tn|Ftn−1)

∂hn(T )

∂tn

]
.

(17)

For general Hawkes processes, Equation (17) is always valid with a suitable weight function. Thus,
we do not need to worry about the issues of failure that may arise when using Equation (13).

Multivariate Hawkes Processes For the multivariate case, events are {(t1, k1), . . . , (tNT
, kNT

)}
with kn ∈ 1, . . . ,K denoting the event type of the n-th event. The history up to the (n − 1)-th
event is denoted by Ftn−1

. We need to consider both the distributions of event times and event types.
For the temporal distribution, we use the AWSM objective with the temporal score ψ(tn|Ftn−1

) =
∂

∂tn
log p(tn|Ftn−1

) as before. For the type distribution, since we do not need to compute the intensity
integral, we directly use the cross-entropy objective:

JCE(θ) = Ep(T )

[
NT∑
n=1

log pθ(kn|Ftn−1
, tn)

]
= E

[
NT∑
n=1

log λkn
(tn|Ftn−1

; θ)− log λ(tn|Ftn−1
; θ)

]
,

(18)
where λ =

∑K
k=1 λk. The final loss is J (θ) = JAWSM(θ) + αJCE(θ); α is a balancing coefficient.

5 Theoretical Analysis

In this section, we analyze the statistical properties of AWSM estimator of univariate Hawkes
process. Similar conclusions also hold for the WSM estimator of Poisson process, as discussed in
Appendix C.5. We considerM i.i.d. sequences {t(m)

1 , . . . , t
(m)
Nm

}Mm=1 from p(T ) of a Hawkes process.
We assume the true density is in the family of the model density, denoted as p(T ) = pθ∗(T ), where
θ∗ ∈ Θ ⊂ Rr. The estimate θ̂ is obtained by θ̂ = argminθ∈Θ ĴAWSM(θ) where ĴAWSM represents
the empirical loss. Below we omit the subscript AWSM as it does not cause any ambiguity.

5.1 Asymptotic Property

We first establish the consistency of θ̂ for a Hawkes process.

Theorem 5.1. Under mild regularity Assumptions C.1 to C.3, we have θ̂
p−→ θ∗ as M → ∞.
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5.2 Non-asymptotic Error Bound

Then, we establish a non-asymptotic error bound for θ̂. We define

Jh(θ) = Ep(T )


NT∑
n=1

[ 1
2
ψ2
θ(tn|Ftn−1) +

∂ψθ(tn|Ftn−1
)

∂tn︸ ︷︷ ︸
An(T ,θ)

]
hn(T ) + ψθ(tn|Ftn−1)︸ ︷︷ ︸

Bn(T ,θ)

∂hn(T )

∂tn

 .
Assumption 5.2. Assume there exists α > 1 such that,

inf
θ:||θ−θ∗||≥δ

Jh(θ)− Jh(θ
∗) ≥ Chδ

α

holds for any small δ. Here, Ch is a positive constant that depends on the weight function h such that
Cah = aCh for any positive constant a. ∥ · ∥ is the euclidean norm.
Assumption 5.3. For ∀n ∈ N+, there exists Ȧn(T ), Ḃn(T ) such that,

|An(T , θ1)−An(T , θ2)| ≤ Ȧn(T )||θ1 − θ2||, |Bn(T , θ1)−Bn(T , θ2)| ≤ Ḃn(T )||θ1 − θ2||.
Theorem 5.4. Given that θ̂ converges to θ∗ in probability, combined with Assumptions 5.2 and 5.3,
for δ < CKα

√
r

2α−1

Γ(h,A,B)
Ch

, we have

Pr

[
||θ̂ − θ∗|| ≤

(
CKα

Γ(h, A,B)

δCh

√
r

M

1/(α−1)
)]

≥ 1− δ, (19)

where Γ(h, A,B) =

√
Ep(T )

{∑NT

n=1

[
(Ȧn(T )hn(T )) + (Ḃn(T )∂hn(T )

∂tn
)
]}2

, C is a universal

constant, Kα = 22α

2α−1−1 , and r is the number of dimensions of θ.

5.3 Discussion on Optimal Weight Function

In Sections 3 and 4, we only provide the conditions that the weight function needs to satisfy. In
fact, there are many weight functions that satisfy these conditions. The optimal weight function
should minimize the error bound in Equation (19), which is equivalent to minimizing the coefficient
Γ(h,A,B)

Ch
. The numerator cannot be analytically computed as it involves an unknown distribution

p(T ), but we can maximize the denominator Ch in a predefined function family.
Theorem 5.5. Define h0 to be a weight function with its n-th element defined as the distance between
tn and the boundary of its support [tn−1, T ]:

h0n(tn) =
T − tn−1

2
− |tn − (T + tn−1)/2|.

We have,
h0 ∈ argmax

h∈H
inf

θ:||θ−θ∗||≥δ

Jh(θ)− Jh(θ
∗)

where H is a family of functions that is rigorously defined in Equation (27).

Combined with Assumption 5.2, it can be observed that h0 maximizes Ch in H. Though it does
not necessarily optimize Γ(h,A,B)

Ch
, it is an adequate choice without using any information on p(T ).

We also discuss it heuristically in Appendix C.4. It is worth noting that h0n is not continuously
differentiable; however, it is weakly differentiable. Its weak derivative is continuous, allowing both
integration by parts and statistical theory to hold. In subsequent experiments, we consistently employ
this optimal weight function when T is available or can be approximated for the dataset.

6 Experiments

In this section, we validate our proposed (A)WSM on parametric or deep point process models.
For parametric models, we focus on verifying whether (A)WSM can accurately recover the ground-
truth parameters. For deep point process models, we confirm that our new training method is also
applicable to deep neural network models. 2

2Experiments are performed using an NVIDIA A16 GPU, 15GB memory.
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Table 1: The MAE of three models trained by MLE, (A)SM, and (A)WSM on the synthetic dataset.
For the 2-variate processes, we only present the estimation results for some parameters here. The
results for other parameters can be found in Table 3.

ESTIMATOR
POISSON EXP-HAWKES GAUSSIAN-HAWKES

ϕ α11 α12 µ1 α11 µ1 σ

(A)WSM 0.07±0.14 0.041±0.041 0.026±0.001 0.011±0.010 0.153±0.162 0.022±0.023 0.060±0.066

(A)SM 1.56±0.01 1.600±0.001 0.200±14.30 0.700±0.272 1.413±0.263 0.696±0.267 2.507±1.957

MLE −0.02±0.10 0.028±0.015 0.014±0.002 0.012±0.006 0.098±0.107 0.017±0.019 0.051±0.049

6.1 Baselines and Metrics

We consider three baseline parameter estimators: (1) MLE (2) implicit (A)SM [18; 24; 10] (3)
Denoising Score Matching (DSM) [10]. We briefly introduce DSM in deep point process models.

For deep Hawkes process training, DSM is employed as follows. For observed timestamps t(m)
n in

m-th sequence, we sample L noise samples t̃(m)
n,l = t

(m)
n +ϵ

(m)
n,l , l = 1, . . . , L, where Var(ε(m)

n,L) = σ2

and get the DSM objective:

Ĵ (θ) =
1

M

M∑
m=1

Nm∑
n=1

L∑
l=1

1

2L
[ψθ(t̃

(m)
n,l |Ft

(m)
n−1

) +
ε
(m)
n,l

σ2
] + αĴCE(θ),

where JCE(θ) is the cross-entropy loss defined in Equation (18).

To compare the performance of different methods, for parametric models on synthetic data, we use
the mean absolute error (MAE, |θ̂ − θ|) between the ground-truth parameters and the estimates as a
metric since the ground-truth parameters are known. For deep point process models, we use the test
log-likelihood (TLL) and the event type prediction accuracy (ACC) on the test data as metrics.

6.2 Parametric Models

Datasets We validate the effectiveness of (A)WSM using three sets of synthetic data. (1) Poisson
Process: This dataset is simulated from an inhomogeneous Poisson process with an intensity
function λ(t) = exp(θ sin(t)) with T = 2, θ = 2. (2) Exponential Hawkes Processes: This
dataset is simulated from 2-variate Hawkes processes with exponential decay triggering kernels
gij(τ) = αij exp(−5τ), τ > 0 with T = 10, µ1 = µ2 = 1, α11 = 1.6, α12 = 0.2, α21 = α22 = 1.
(3) Gaussian Hawkes Processes: This dataset is simulated from 2-variate Hawkes processes with
Gaussian decay triggering kernels gij(τ) =

αij√
2πσ

exp(− τ2

2σ2 ), τ > 0 with T = 10, µ1 = µ2 = 1,
α11 = 1.6, α12 = 0.2, α21 = α22 = 1, σ = 1.

Training Protocol We assume that we know the ground-truth model but do not know its parameters.
Therefore, we use the ground-truth model as the training model. The purpose is to verify whether
the estimator can recover the ground-truth parameters. For each dataset, we collect a total of 1000
sequences. We run 500 iterations of gradient descent using Adam [8] as the optimizer for all
scenarios. For MLE, the intensity integral is computed through numerical integration, with the
number of integration nodes set to 100 to achieve a considerable level of accuracy. We change the
random seed 3 times to compute the mean and standard deviation of MAE.

Results In Table 1, we report the MAE of parameter estimates for three models trained by MLE,
(A)SM, and (A)WSM on the synthetic dataset. We can see that both MLE and (A)WSM achieve
small MAE on three types of data. However, the MAE of (A)SM is large. As we have theoretically
demonstrated earlier, this is because MLE and (A)WSM estimators are consistent. In contrast, (A)SM,
due to the absence of the required regularity conditions in the three cases, has an incomplete objective
and cannot accurately estimate parameters. In Figure 1, we showcase the learned intensity functions.
Both MLE and (A)WSM successfully captured the ground truth, while (A)SM fails.
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Figure 1: The learned intensity functions from MLE, (A)SM, and (A)WSM on (a) Poisson, (b)
Exp-Hawkes and (c) Gaussian-Hawkes. We present the results for the 1-st dimension. The 2-nd
dimension are in Appendix D. The ground truth, MLE, and (A)WSM nearly overlap, while (A)SM
differs. (d) The TLL and runtime of (A)WSM and MLE w.r.t. the number of integration nodes.

6.3 Deep Point Processes Models

Datasets We consider four real datasets. (1) Half-Sin Hawkes Process: This is a synthetic 2-variate
Hawkes process with trigerring kernel gij = αijsin(τ), τ ∈ (0, π), K = 2. (2) StackOverflow [7]:
This dataset has two years of user awards on StackOverflow. Each user received a sequence of badges
and there are K = 22 kinds of badges. (3) Retweet [25]: This dataset includes sequences indicating
how each novel tweets are forwarded by other users. Retweeter categories serve as event typesK = 3.
(4) Taobao [21]: This dataset comprises user activities on Taobao (in total K = 17 event types). For
each dataset, we follow the default training/dev/testing split in the repository.

Training Protocol In recent years, many deep point process models have been proposed. Here, we
focus on two of the most popular attention-based Hawkes process models: SAHP [23] and THP [27].
We deploy AWSM and ASM on THP and SAHP. For each dataset, we train 3 seeds with the same
epochs and report the mean and standard deviation of the best TLL and ACC. When using MLE, we
adopt numerical integration to calculate the intensity integral. To ensure model accuracy, the number
of integration nodes is set to be large enough as we sample 10 nodes between every two adjacent
events. When using DSM, we tune the variance of noise for better results. When using AWSM, since
for real datasets, the true observation endpoint T is unknown. We choose the maximum event time
of each batch as the observation endpoint for weight function h0. This may lead to unsatisfying
results since real datasets may not be sampled during a unified time window. We provide a remedy
for this as discussed in Appendix D.1. Details of training and testing hyperparameters are provided in
Appendix D.2.

Results In Table 2, we report the performance of SAHP and THP trained using three different
methods, namely MLE, AWSM, and DSM, on four datasets. It is evident from the results that models
trained with MLE and AWSM exhibit very similar performance in terms of both TLL and ACC on
the test data. This indicates consistency between MLE and AWSM, as they yield comparable model
parameters. For DSM, it is significantly inferior to the performance of MLE and AWSM. This may
result from the fact that the DSM objective is a biased estimation of the original SM objective and
fails to produce consistent estimation when σ > 0 as discussed in [20]. For ASM, it completely
fails in the scenarios mentioned above. It is unable to estimate the correct parameters, and its results
are not reported. Generally, for complex point process models such as deep Hawkes processes, the
necessary regularity conditions are not satisfied, meaning that ASM’s objective is incomplete.

6.4 Advantage of (A)WSM over MLE

The key advantage of (A)WSM over MLE is its avoidance of computing intensity integrals, which
can be computationally intensive for complex point process models and impact MLE accuracy. We
evaluate the test log-likelihood of MLE and AWSM on the Exp-Hawkes dataset as the number of
integration nodes varies. As shown in Figure 1d, with a limited number of nodes, MLE is faster
but exhibits substantial estimation errors. Increasing the number of nodes reduces the error but
significantly increases computation time. In this scenario, AWSM is much faster than MLE with the
same accuracy, thus offering better computational efficiency.
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Table 2: The TLL and ACC of two attention-based deep Hawkes process models trained by MLE and
AWSM on four datasets. Because ASM estimator completely fails, we do not report its results.

DATASET
SAHP (TLL↑) THP (TLL↑)

MLE AWSM DSM MLE AWSM DSM

HALF-SIN 1.542±0.038 1.703±0.014 0.804±0.353 1.161±0.031 1.271±0.036 −0.385±0.033

STACKOVERFLOW −2.428±0.14 −2.541±0.461 −2.629±0.068 −2.368±0.003 −2.508±0.007 −2.782±0.034

TABAO −1.050±0.100 −1.373±0.091 −1.911±0.049 −1.052±0.012 −0.948±0.004 −1.791±0.040

RETWEETS 0.454±0.009 0.411±0.077 0.110±0.186 0.421±0.012 0.419±0.009 −0.183±0.197

DATASET
SAHP (ACC↑) THP (ACC↑)

MLE AWSM DSM MLE AWSM DSM

HALF-SIN 0.502±0.001 0.505±0.001 0.501±0.001 0.508±0.016 0.523±0.010 0.503±0.001

STACKOVERFLOW 0.461±0.001 0.462±0.01 0.421±0.042 0.461±0.001 0.462±0.001 0.445±0.016

TABAO 0.572±0.022 0.455±0.011 0.421±0.017 0.594±0.001 0.592±0.002 0.435±0.010

RETWEETS 0.454±0.009 0.411±0.077 0.590±0.009 0.594±0.001 0.592±0.002 0.556±0.011
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Figure 2: MAE of parameter estimation versus sample size for three different weight functions on
Exponential-Hawkes Model. Our near-optimal weight function outperforms the rest two valid weight
functions in all sample sizes. We only show results for three parameters. The rest parameters have
almost the same paradigm.

6.5 Comparison Between Weights

Though we provide theoretical insight into the choice of an optimal weight function for AWSM, its
validity still needs to be testified by experiments. Here, we compare the near-optimal weight h0 with
natural weight h1 and squareroot weight h2 satisfying Equation (15),

h1n(tn) = (tn − tn−1)(T − tn), h
2
n(tn) =

√
(tn − tn−1)(T − tn).

All three weight functions can be applied in AWSM to recover ground-truth parameters, however
with different convergence rates. We carry out experiments on synthetic data for exponential-decay
model with the same setting as Section 6.2 in our paper. We measure their MAE for different sample
sizes in Figure 2 and find that h0 does achieve the best results among the three weight functions.

7 Limitations

The current limitation of the methodology is that some real data are collected from multiple time
intervals [0, T1], . . . , [0, TL] or collated in a fixed time interval [0, T ] with unknown T . However, for
a score matching to be valid, the required weight function must involve knowledge of T . Currently,
our remedy including approximate T or performing data truncation as discussed in Appendix D.1.

8 Conclusions

In conclusion, the SM estimator for point processes can overcome the challenges associated with
intensity integrals in MLE. While existing works have proposed SM estimators for point processes,
our investigation reveals that they prove effective only for specific problems and fall short in more
general cases. To address this issue, our work introduces a novel approach: the (A)WSM estimator
for point processes, offering both theoretical soundness and empirical success.
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A Proof of Results in Section 3

A.1 Proof of Proposition 3.1

Proof. First consider the cross term in LSM(θ) and expand the expectation,

Ep(T )

[
NT∑
n=1

∂ log p(T )

∂tn

∂ log pθ(T )

∂tn

]

=

∞∑
N=1

∫
p(t1, . . . , tN )

N∑
n=1

∂ log p(t1, . . . , tN )

∂tn

∂ log pθ(t1, . . . , tN )

∂tn
dT1:N

=

∞∑
N=1

∫ N∑
n=1

∂p(t1, . . . , tN )

∂tn

∂ log pθ(t1, . . . , tN )

∂tn
dT1:N

=

∞∑
N=1

{∫ N∑
n=1

[p(t1, . . . , tN )
∂ log pθ(t1, . . . , tN )

∂tn
]
∣∣tn=tn+1

tn=tn−1
dT−n

−
∫ N∑

n=1

p(t1, . . . , tN )
∂2 log pθ(t1, . . . , tN )

∂t2n
dT1:N

}
.

(20)

The third equation uses an integral-by-part trick. All integrations above are taken within the area of
{0 ≤ t1 ≤ . . . ≤ tN ≤ T} or {0 ≤ t1 ≤ . . . ≤ tn−1 ≤ tn+1 ≤ . . . ≤ tN ≤ T} when tn has been
integrated. For the first term in the right side of the last equation, notice that,

∂ log pθ(t1, . . . , tN )

∂tN
=

∂

∂tn
log λθ(tn),

∂

∂tn
log λθ(tn)

∣∣
tn=tn−1

=
∂

∂tn−1
log λθ(tn−1)|tn−1=tn .

(21)

Therefore, we can see that, for n ∈ {2, . . . , n},∫
[p(t1, . . . , tN )

∂ log pθ(t1, . . . , tN )

∂tn−1
]
∣∣
tn−1=tn

dT−(n−1)

=

∫
[p(t1, . . . , tN )

∂ log pθ(t1, . . . , tN )

∂tn
]
∣∣
tn=tn−1

dT−n.

Using the above equation, we manage to cancel out most of the terms being summed in the right
side of the thrid equation in Equation (20) and only leave the first and last term, which completes the
proof.

A.2 Proof of Theorem 3.2

Proof. First, since LWSM(θ) ≥ 0 and LWSM(θ∗) = 0, we see θ∗ is a minimizer. If there exists another
minimizer θ1, then we have

LWSM(θ) =

∞∑
N=1

∫ N∑
n=1

[
∂

∂tn
log λθ∗(tn)−

∂

∂tn
log λθ1(tn)

]2
hn(T )dT .

By the definition of h(T ), for any N , since h(T ) > 0 a.s. elementwisely on {0 ≤ t1 ≤ . . . ≤ tN ≤
T}. So LWSM(θ) = 0 implies ∂ log λθ∗ (t)

∂t = ∂ log λθ1
(t)

∂t a.e. on [0, T ]. By assumption, this implies
θ1 = θ∗, which completes the proof.
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A.3 Proof of Theorem 3.3

Proof. The proof is basically the same as the proof of Proposition 3.1. We first expand the expectation
and consider the cross-term in LWSM(θ),

Ep(T )

[
NT∑
n=1

∂ log p(T )

∂tn

∂ log pθ(T )

∂tn
hn(T )

]
=

∞∑
N=1

∫ N∑
n=1

∂p(T )

∂tn

∂ log pθ(T )

∂tn
hn(T )dT1:N

=

∞∑
N=1

{∫ N∑
n=1

p(t1, . . . , tN )
∂ log pθ(T )

∂tn
hn(T )

∣∣∣tn=tn+1

tn=tn−1

dT−n

−
∫
p(t1, . . . , tN )

N∑
n=1

[
∂2 log pθ(T )

∂t2n
hn(T ) +

∂ log pθ(T )

∂tn

∂hn(T )

∂tn

]
dT1:N

}
.

(22)

We denote tN+1 = T and t0 = 0 here. Using the first two equations in Equation (9), we have:∫
[p(t1, . . . , tN )

∂ log pθ(t1, . . . , tN )

∂tn
hn(T )]

∣∣
tn=tn+1

dT−n = 0,∀n ∈ [N ],∫
[p(t1, . . . , tN )

∂ log pθ(t1, . . . , tN )

∂tn
hn(T )]

∣∣
tn=tn−1

dT−n = 0,∀n ∈ [N ].

Therefore, the first intractable summation term in Equation (22) will disappear, and the second term
equals −Ep(T )

[∑NT

n=1
∂

∂tn
ψθ(tn)hn(T ) + ψθ(tn)

∂
∂tn

hn(T )
]
. The existence of such an expectation

is due to the last two equations in Equation (9). Therefore, we complete the proof.

We can see from the proof that, in Equation (9), the first two equations ensure that the integration
by parts trick does not produce an intractable term, and the last two equations are simply regularity
conditions that ensure all terms are well-defined.

B Proof of Results in Section 4

Lemma B.1. Let f(tn,Ftn−1) be a function of tn,Ftn−1 , where n ∈ {1, . . . , NT }. Then we have

Ep(T )

[
NT∑
n=1

f(tn,Ftn−1)

]
=

∞∑
n=1

∫
p(t1, . . . , tn)f(tn,Ftn−1)dT1:n,

where p(t1, . . . , tn) is the density of observing these timestamps, the integration is taken over
{0 ≤ t1 ≤ . . . ≤ tn ≤ T}.

Proof. We first expand the expectation and obtain,

Ep(T )

[
NT∑
n=1

f(tn,Ftn−1)

]
=

∞∑
N=1

∫
p(t1, . . . , tN )

N∑
n=1

f(tn,Ftn−1)dT

=

∞∑
N=1

{∫ ∫ N−1∑
n=1

p(t1, . . . , tn)p(tn+1, . . . , tN |Ftn)f(tn,Ftn−1
)dTn+1:NdT1:n

+

∫
p(t1, . . . , tN )p(NT = N |FtN )f(tN ,FtN−1

)dT
}
.

At this point, we need to first integrate out tn+1, . . . , tN , which uses∫
p(tn+1, . . . , tN |Ftn)dTn+1:N = p(NT = N |Ftn).
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Plug this in and we obtain,

Ep(T )

[
NT∑
n=1

f(tn,Ftn−1
)

]
=

∞∑
N=1

∫ N∑
n=1

p(t1, . . . , tn)p(NT = N |Ftn)f(tn,Ftn−1
)dT1:n

=

∞∑
N=1

N∑
n=1

∫
p(t1, . . . , tn)p(NT = N |Ftn)f(tn,Ftn−1)dT1:n

=

∞∑
n=1

∫
p(t1, . . . , tn)f(tn,Ftn−1)

∞∑
N=n

p(NT = N |Ftn)dT1:n

=

∞∑
n=1

∫
p(t1, . . . , tn)f(tn,Ftn−1)dT1:n.

The thrid equation adopts the exchange of summation. The feasibility is ensured by the assumption
that the expectation in the left side of the equation exists and Fubini’s theorem. The fourth equation
use the fact that

∑∞
N=n p(NT = N |Ftn) = 1.

B.1 Proof of Proposition 4.1

Proof. We use Lemma B.1 to the cross term of LASM(θ) and obtain,

Ep(T )

[
NT∑
n=1

ψ(tn|Ftn−1
)ψθ(tn|Ftn−1

)

]

=

∞∑
n=1

∫
p(t1, . . . tn)ψ(tn|Ftn−1

)ψθ(tn|Ftn−1
)dT1:n

=

∫ T

t0

p(t1|Ft0)
∂ log p(t1|Ft0)

∂t1
ψθ(t1|Ft0)dt1

+

∞∑
n=2

∫
p(t1, . . . , tn−1)p(tn|Ftn−1

)
∂ log p(tn|Ftn−1)

∂tn
ψθ(tn|Ftn−1

)dT1:n

=

∫ T

t0

∂p(t1|Ft0)

∂t1
ψθ(t1|Ft0)dt1 +

∞∑
n=2

∫ ∫ T

tn−1

p(t1, . . . , tn−1)
∂p(tn|Ftn−1)

∂tn
ψθ(tn|Ftn−1)dtndT1:n−1

= p(t1|Ft0)ψθ(t1|Ft0)
∣∣t1=T

t1=t0
−
∫ T

t0

p(t1|Ft0)
∂ψθ(t1|Ft0)

∂t1
dt1

+

∞∑
n=2

∫
p(t1, . . . , tn−1)p(tn|Ftn−1

)ψθ(tn|Ftn−1
)
∣∣tn=T

tn=tn−1
dT1:n−1

−
∞∑

n=2

∫
p(t1, . . . , tn)

∂ψθ(tn|Ftn−1
)

∂tn
dT1:n

=

∞∑
n=1

∫
p(T:n−1)p(tn|Ftn−1

)ψθ(tn|Ftn−1
)
∣∣∣tn=T

tn=tn−1

dT:n−1 −
∞∑

n=1

∫
p(t1, . . . , tn)

∂ψθ(tn|Ftn−1
)

∂tn
dT1:n

=

∞∑
n=1

∫
p(T:n−1)p(tn|Ftn−1

)ψθ(tn|Ftn−1
)
∣∣∣tn=T

tn=tn−1

dT:n−1 − Ep(T )

[
NT∑
n=1

∂ψθ(tn|Ftn−1
)

∂tn

]
.

For the fifth equation, we simply rearrange the terms. We recall that the notation p(T:0) equals one.
For the last equation, we use Lemma B.1 again. This will be sufficient to complete the proof.
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B.2 Proof of Theorem 4.2

Proof. First, since LAWSM(θ) ≥ 0 and LAWSM(θ∗) = 0, we see θ∗ is a minimizer. If there exists
another minimizer θ1, then we have

LAWSM(θ1) =
1

2

∞∑
N=1

∫ N∑
n=1

[ψθ∗(tn|Ftn−1
)− ψθ1(tn|Ftn−1

)]2hn(T )dT = 0.

By the definition of hn(T ), we have hn(T ) > 0, a.s. on 0 ≤ t1 ≤ . . . ,≤ tN ≤ T for any n ≤ N
and N ∈ N+. This implies, for any n ≤ N and N ∈ N+, ψθ∗(tn|Ftn−1

) = ψθ1(tn|Ftn−1
), a.e. on

{0 ≤ tn−1 ≤ tn ≤ T}. Therefore we have

log pθ∗(tn|Ftn−1) = log pθ1(tn|Ftn−1) + C, a.e.,

And we conclude that C = 0 since
∫ T

tn−1
pθ(tn|Ftn−1)dtn = 1. Then by assumption, we have

pθ∗(tn|Ftn−1) = pθ1(tn|Ftn−1) a.e.⇒ θ1 = θ∗.

B.3 Proof of Theorem 4.3

The proof is basically the same as the proof of Proposition 4.1. We first use the Lemma B.1 to the
cross term of LAWSM(θ),

Ep(T )

[
NT∑
n=1

ψ(tn|Ftn−1
)ψθ(tn|Ftn−1

)hn(T )

]

=

∞∑
n=1

∫
p(t1, . . . tn)ψ(tn|Ftn−1

)ψθ(tn|Ftn−1
)hn(T )dT1:n

=

∞∑
n=1

∫
p(T:n−1)p(tn|Ftn−1)ψθ(tn|Ftn−1)hn(T )

∣∣∣tn=T

tn=tn−1

dT:n−1

−
∞∑

n=1

∫
p(t1, . . . , tn)

[
∂ψθ(tn|Ftn−1

)

∂tn
hn(T ) + ψθ(tn|Ftn−1)

∂hn(T )

∂tn

]
dT1:n.

Between the second and the third line above, we omit the steps used in the derivation of Proposition
4.1 to make it concise. For the term in the third line above, it will be eliminated using Equation (15).
For the term in the fourth line above, using Lemma B.1, we have:

−
∞∑

n=1

∫
p(t1, . . . , tn)

[
∂ψθ(tn|Ftn−1

)

∂tn
hn(T ) + ψθ(tn|Ftn−1)

∂hn(T )

∂tn

]
dT1:n =

− Ep(T )

[
NT∑
n=1

∂ψθ(tn|Ftn−1
)

∂tn
hn(T ) + ψθ(tn|Ftn−1)

∂hn(T )

∂tn

]
.

The existence of the expectation is ensured by the last two terms in Equation (15).

C Proof of Results in Section 5

We present all the regularity condition needed for establishing the consistency of our estimator:
Assumption C.1. The parameter space Θ is a compact set in Rd and contains an open set which
contains θ∗.
Assumption C.2. Both the µθ(t) and gθ(t) are twice continuously differentiable w.r.t. t for all θ ∈ Θ
and those derivatives are continuous w.r.t. θ.

We remind readers that µθ(t) and gθ(t) are the mean intensity function and the triggering kernel for a
Hawkes process, first defined in Equation (2).
Assumption C.3. If both µθ1(t) = µθ2(t) a.s. and gθ1(t) = gθ2(t) a.s. on [0, T ], then θ1 = θ2.
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C.1 Proof of Theorem 5.1

Proof. As shown in Theorem 5.7 in [19], if we can prove a uniform in probability convergence for
ĴAWSM(θ) to JAWSM(θ), then using the fact that θ∗ is a unique minimizer of JWSM(θ) in a compact
set in Rd, the consistency is proved. Therefore, we only prove the uniform in probability convergence.

For any θ ∈ Θ, for each sampled sequence (t
(m)
1 , . . . , t

(m)
Nm

), we perceive the following value as a
random variable,

ξm =

Nm∑
n=1

[
1

2
ψθ(t

(m)
n |F

t
(m)
n−1

)hn(T (m)) +
∂

∂tn
ψθ(t

(m)
n |F

t
(m)
n−1

)hn(T (m))

+ ψθ(t
(m)
n |F

t
(m)
n−1

)
∂

∂tn
hn(T (m))

]
.

One can verify that it is a measurable map from the sample space to the real line, therefore indeed a
random variable. And its expectation is JAWSM(θ), which is finite by assumption. Since different
sequences are i.i.d. samples with finite expectation, using the weak law of large numbers, we have:

ĴAWSM(θ) =
1

M

M∑
m=1

ξm
p−→ JAWSM(θ),∀θ ∈ Θ. (23)

Now we prove that this convergence is uniform in Θ. Similar to [2], we first prove that

∀ε > 0,∃δ > 0, s.t.∀||θ1 − θ2|| < δ,P(|ĴAWSM(θ1)− ĴAWSM(θ2)| >
1

3
ε) → 0,M → ∞. (24)

First, by Assumption C.2, we know λθ(tn|Ftn−1
and ∂

∂tn
λθ(tn|Ftn−1

are continuous w.r.t
θ. Therefore ψθ(tn|Ftn−1) = ∂

∂tn
log λθ(tn|Fn−1) − λθ(tn|Ftn−1) and ∂

∂tn
ψθ(tn|Ftn−1) =

∂2

∂t2n
log λθ(tn|Ftn−1

)− ∂
∂tn

λθ(tn|Ftn−1
) are both continuous w.r.t. θ, therefore the JAWSM(θ) is a

continuous function of θ. Since Θ is a compact set in Rd, we know JAWSM(θ) is uniform continuous.

Therefore, we can bound |JAWSM(θ1)−JAWSM(θ2)| using ∥θ1−θ2∥. Using the result in Equation (23),
we know that for any ε > 0, we can find a uniform δ so that |JAWSM(θ1)−JAWSM(θ2)| < 1

6ε,∀||θ1−
θ2|| < δ. So that,

P(|ĴAWSM(θ1)− ĴAWSM(θ2)| >
1

3
ε)

< P(|ĴAWSM(θ1)− JAWSM(θ1)|+ |ĴAWSM(θ2)− JAWSM(θ2)| >
1

6
ε)

< P(|ĴAWSM(θ1)− JAWSM(θ1)| >
1

12
ε) → 0,M → ∞.

Now we follow exactly the same steps as [2] for the uniform in probability convergence. Since
Equation (24) hold, for such a δ in that equation, since Θ is a compact set in Rd, there exists a finite
number of open balls with radius δ whose union covers Θ. Let ϑ1, . . . , ϑi, . . . , ϑL denote the centers
of these balls. We denote ϑi(θ) the center of a ball which contains θ. Since we have

P(sup
θ

|ĴAWSM(θ)− JAWSM(θ)| > ε) ≤ P(sup
θ

|ĴAWSM(θ)− ĴAWSM(ϑi(θ))| >
ε

3
)

+ P(sup
θ

|ĴAWSM(ϑi(θ))− JAWSM(ϑi(θ))| >
ε

3
) + P(sup

θ
|JAWSM(θ)− JAWSM(ϑi(θ))| >

ε

3
).

The third term on the right equals 0 because of its definition and the uniform continuous of JAWSM(θ).
The first term converges to 0,M → ∞ by Equation (24). For the second term, we write

P(sup
θ

|ĴAWSM(θ)− JAWSM(ϑi(θ))| >
ε

3
) <

L∑
i=1

P(|ĴAWSM(θi)− JAWSM(θi)| >
ε

3
) → 0.
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Finally we obtain supθ∈Θ |ĴAWSM(θ)− JAWSM(θ)| p−→ 0, which completes the proof.

C.2 Proof of Theorem 5.4

First we restate the technical assumptions needed for the proof.
Assumption 5.2. Assume there exists α > 1 such that,

inf
θ:||θ−θ∗||≥δ

Jh(θ)− Jh(θ
∗) ≥ Chδ

α

holds for any small δ. Here, Ch is a positive constant that depends on the weight function h such
that Cah = aCh for any positive constant a.

For this assumption, we assume that the optimal parameter θ∗ is well-separated from other neigh-
bouring parameters in terms of the population objective values. This is a standard assumption for
Theorem 5.52 in [19]. This assumption will satisfy if ∇2

θJh(θ) is positive definite at θ∗.

Assumption 5.3. For ∀n ∈ N+, there exists Ȧn(T ), Ḃn(T ) such that,

|An(T , θ1)−An(T , θ2)| ≤ Ȧn(T )||θ1 − θ2||, |Bn(T , θ1)−Bn(T , θ2)| ≤ Ḃn(T )||θ1 − θ2||.

For this assumption, we assume the objective function has certain level of continuity. This assumption
will realize if supθ∈Θ ||∇θAn(T , θ)|| exisits for any n and the same condition also applies to
Bn(T , θ).
We also define,

Jh(T ; θ) =

NT∑
n=1

[
[An(T , θ)hn(T ) +Bn(T , θ)

∂hn(T )

∂tn

]
,

we see E[Jh(T ; θ)] = Jh(θ).

Now we begin the proof of Theorem 5.4.

Proof. First define

J̇h(T ) =

NT∑
n=1

[
Ȧn(T )hn(T ) + Ḃn(T )

∂hn(T )

∂tn

]
.

Next we evaluate the bracketing number of such function class,

Fδ := {Jh(T ; θ)− Jh(T ; θ∗)|θ ∈ Θ, ||θ − θ∗|| ≤ δ}.
a

Denote N[](ε,F , L2(P )) as the bracketing number of F with the radius ε under the norm of L2(P ).
P is the underlying probability measure induced by T . Use Example 19.6 in [19] we have,

N[](ε||J ||L2(P ),Fδ, L
2(P )) ≤ (1 +

4δ

ε
)r

Since
|Jh(T ; θ)− Jh(T ; θ∗)| ≤ J̇h(T )||θ − θ∗|| ≤ J̇h(T )δ, (25)

therefore J̇h(T )δ is the envelope of Fδ , we denote it as Fδ . Therefore we obtain,

N[](ε||Fδ||L2(P ),Fδ, L
2(P )) = N[](εδ||J̇h||L2(P ),Fδ, L

2(P )) ≤ (1 +
4

ε
)r.

After obtaining this quantity, the next step is to upper bound the empirical process defined as,

GM

(
Jh(; θ)− Jh(; θ

∗)
)
:=

1√
M

M∑
m=1

[
Jh(Tm; θ)− Jh(Tm; θ∗)− Ep(T )[Jh(T ; θ)− Jh(T ; θ∗)]

]
18



Using Corollary 19.35 in [19], since we have ||J̇h||L2(P ) = Γ(h, A,B) <∞, then,

E

[
sup
f∈Fδ

Gn(f)

]
≤ CJ[](||F ||L2(P ),Fδ, L

2(P ))

= C||F ||L2(P )

∫ 1

0

√
logN[](ε||F ||L2(P ),Fδ, L2(P ))dε

≤ Cδ||ṁ||L(P )

√
r

∫ 1

0

√
log(1 +

4

ε
)dε

≤ C ′√rδΓ(h, A,B),

(26)

where C and C ′ are universal constant and J[](·, ·, ·) is the entropy integral.

Finally, given that θ̂ converges to θ∗ in probability, combined with Assumption 5.2 and Equation (26),
using Theorem 5.52 in [19] we have, for δ < CKα

√
r

2α−1

Γ(h,A,B)
Ch

, we have,

Pr

[
||θ̂ − θ∗|| ≤

(
CKα

Γ(h, A,B)

δCh

√
r

n

1/(α−1)
)]

≥ 1− δ,

where C is a universal constant and Kα = 22α

2α−1−1 .

C.3 Proof of Theorem 5.5

First we give a rigorous definition of H,

H :=
{
h(T ) | h : RNT

+ → RNT
+ , hn(T ) = hn(tn, . . . , t1), hn(T )|tn=tn−1

= hn(T )|tn=T = 0

|hn(t1n, t1, . . . , tn−1)− hn(t
2
n, t1, . . . , tn−1)| ≤ |t1n − t2n|,∀n, t1n, t2n

}
.

(27)

In other words, H contains functions whose component function hn is 1-Lipschitz continuous w.r.t.
its last dimension tn. It’s easy to verfity h0 ∈ H.

Proof. First we prove that,
max
h∈H

Lh(θ) = Lh0(θ) (28)

Notice that,

Lh(θ) =
1

2
Ep(T )

[
NT∑
n=1

(ψ(tn|Ftn−1)− ψθ(tn|Ftn−1))
2hn(T )

]
Notice that, in H, for any z = t− n− 1 or z = T ,

|hn(T )| = |hn(tn, . . . , t1)| = |hn(tn, . . . , t1)− hn(z, . . . , t1)| ≤ |t1n − z| = h0n(T )

Therefore,

Lh(θ) ≤
1

2
Ep(T )

[
NT∑
n=1

(ψ(tn|Ftn−1
)− ψθ(tn|Ftn−1

))2h0n(T )

]
= Lh0(θ),∀h ∈ H

and equation 28 is proved.

Finally, we have,

infθ:||θ−θ∗||≥δJh0(θ)− Jh0(θ∗)

=infθ:||θ−θ∗||≥δLh0(θ)− Lh0(θ∗)

=infθ:||θ−θ∗||≥δsuph∈H[Lh(θ)− Lh(θ
∗)]

=infθ:||θ−θ∗||≥δsuph∈H[Jh(θ)− Jh(θ
∗)]

≥suph∈Hinfθ:||θ−θ∗||≥δ[Jh(θ)− Jh(θ
∗)].
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The second equality is due to Equation (28) and Lh(θ
∗) = 0. The inequality is due to max-min

inequality.

C.4 Continued Discussion on Optimal Weight Function

Given h0 maximizes Ch, it is still unclear whether it is still preferable considering Γ(h, A,B). This
is indeed a tough question that we do not yet have a satisfying answer. For specific parametric
models, Ȧn(T ), Ḃn(T ) can be computed analytically (see line 478-480) and then Γ(h, A,B) can
be computed via Monte Carlo. Then we can study how sensitive Γ(h, A,B) is to h. For general
models, especially when ψθ is a deep neural network like THP or SAHP, Γ(h, A,B) is intractable to
compute.

However, heuristically speaking, our choice of near-optimal weight function h0 should be a good
choice even concerning Γ(h, A,B). To make Γ(h, A,B) small, a natural idea is to make |hn(T )|
and | ∂

∂tn
hn(T )| small. The weight function we chose and its derivative have relatively positive low

powers with respect to tn, therefore making |h0n(T )| and | ∂
∂tn

h0n(T )| small. For weight functions
h1n(T ) = (T − tn)(tn− tn−1), the power w.r.t. tn is two. And for h2n(T ) =

√
(T − tn)(tn − tn−1),

its derivative is ∂
∂tn

h2n(T ) = T−tn−(tn−tn−1)√
(T−tn)(tn−tn−1)

, the numerator is usually a bounded quantity and

the denominator may be close to zero, making its derivative large. In conclusion, h0 is a better choice
compared with h1 or h2 concerning Γ(h, A,B).

C.5 Discussion on Poisson Process

For Poisson process, results in Section 5 also holds, including the consistency and the convergence
rate. For the choice of weight function, a reasonable choice is still the distance function presented
below.

Consider a Poisson process, since the support of T is V = {T ∈ NT , 0 ≤ t1 ≤ . . . ≤ tNT
≤ T}.

Define A ∈ R(NT+1)×NT to be a coefficient matrix used below as,

A =



−1 0 0 . . . 0
1 −1 0 . . . 0
0 1 −1 . . . 0
...

...
...

. . . 0
0 0 0 1 −1
0 0 0 0 1

 .

Denote an ∈ RNt as the n-th row vector of A. Let bn = 0, n ∈ [NT ], bNT+1 = −T . Then V is a
convex Polytope which can be rewritten as,

V = {T ∈ RNT |⟨an, T ⟩+ bn ≤ 0, n = 1, 2, . . . , NT + 1}.

Therefore, the distance between T and ∂V is ,

dist(T , ∂V ) = min
z

{∥T − z∥| max
n∈[NT+1]

[⟨an, z⟩+ bn] = 0} = min
n∈[NT+1]

|⟨an, z⟩+ bn|
∥an∥

. (29)

Let h0n(T ) = dist(T , ∂V ),h0(T ) = (h0n(T ), h0n(T ), . . . , h0n(T ))T . Again, h0(T ) is only weak
derivative. The envelope theorem in [14] yields,

∇T h
0(T ) = − an∗

∥an∗∥
,

wehre n∗ is the is the minimizer of the last minimization in Equation (29).

Similar arguments as in Section 5.3 also applies to Poisson process, with the distance weight function
defined above. Such a weight function also maximizes the denominator for the convergence rate
of the Poisson process. However, in the experiment, we adtops another weight function for easier
implementation defined as h1(T ) with its n-th component h1n(T ) = (T − tn)(tn − tn−1).
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Table 3: The MAE of 2-variate Hawkes processes trained by MLE, (A)SM, and (A)WSM on the
synthetic dataset.

ESTIMATOR
EXP-HAWKES GAUSSIAN-HAWKES

α21 α22 µ2 α12 α21 α22 µ2

(A)WSM 0.052±0.054 0.022±0.005 0.011±0.012 0.037±0.043 0.082±0.080 0.012±0.010 0.060±0.066

(A)SM 0.769±0.001 0.769±0.001 0.680±0.270 0.126±0.108 0.971±0.040 0.717±2.85 2.507±1.957

MLE 0.065±0.032 0.034±0.015 0.014±0.002 0.025±0.032 0.045±0.041 0.006±1.06 0.051±0.049

Table 4: The hyparameters for experiments in Table 2.

DATASET
EPOCHS αAWSM TRUNC αDSM σDSM

SAHP THP SAHP THP SAHP THP SAHP THP SAHP THP

HALF-SIN 100 100 20 20 F F 20 10 0.01 0.01
STACKOVERFLOW 100 500 20 20 T F 10 10 0.1 0.1
TAOBAO 500 300 50 20 T T 20 20 0.01 5E-3
RETWEETS 100 100 20 10 F F 2000 10 0.01 5E-4

D Additional Experimental Details

In this section, we present some experimental details. First we discuss our modification to the original
AWSM for when T for a dataset is not accessible. Then we provide addtional estimation results for
the parametric model and hyperparameters for results in Table 2.

D.1 Weight for Equal Length Sequences

In this paper, we consider the setting of the temporal point process in a fixed time interval [0, T ]
consistently. Technically speaking, this poses extra difficulty since the dimension(number of events)
would also be random. Therefore, the realized point processes should have a random length in this
setting, which is the case for our dataset. However, in real data collection, different sequences may
be sampled from different lengths of time interval lengths, and our proposed weight may fail under
such a case, resulting in inconsistent estimation. In such a case, we propose to truncate the sequences
to be of same length, and introduce the weight function for fixed-length temporal point processes.

We focus on AWSM for Hawkes process. A fixed N -length Hawkes process could be considered as a
N dimensional random variable with density function as,

p(t1, . . . , tN ) =

N∏
n=1

λ∗(tn)

∫ tN

0

λ∗(t)dt.

Since the number of observations is fixed, we could simply treat it as an N dimensional random
variable and perform autoregressive weighted score matching. The valid weight function in this
case should satisfy hn(T )|tn=tn−1 = hn(T )|tn=tn+1 = 0. Similar nonasymptotic bounds could be
derived here and a near optimal weight function would be the Euclidean distance between tn and the
boundary of tn’s support, which would be {tn−1, tn+1}. Therefore, the near-optimal weight function
would be h0n(T ) = min{tn − tn−1, tn+1 − tn}.

During experiments, when T is unknown and cannot be approximated well, we perform a data
truncation for each batch. We naively drop all timestamps beyond the length of the shortest sequence
to make length consistent within a batch. Then we perform an AWSM for the fixed-length Hawkes
process. We specify the results with this modification when we show our hyperparameters.

D.2 Addtional Results and Hyperparameters

For parametric models, Table 3 provide the estimation results for some parameters and Figure 3
shows the learned intensity functions on the 2-nd dimension for the 2-variate Hawkes processes.

For deep point process experiments, we run 4 datasets with 3 methods deployed on 2 models. We
show the hyperparameters of those experiments in Table 4. Epochs column represents the number
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(a) Exp-Hawkes Dim-2
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Figure 3: The learned intensity functions from MLE, (A)SM, and (A)WSM on (a) Exp-Hawkes and
(b) Gaussian-Hawkes for the 2-nd dimension.

of epochs for the experiments of a model (THP or SAHP) on a dataset. We train same epochs for
three training methods (MLE, AWSM or DSM) and validate every 10 epochs to report the best result.
When training MLE, the hyperparameter is the number of integral nodes, which is always 10 for all
experiments. When training AWSM, we have two hyperparameters, the value of balancing coefficient
for CE loss, shown in column αAWSM and whether data truncation is performed as shown in column
Trunc. T represents performing data truncation and F represents no data truncation. For DSM, the
hyperparameters are balancing coefficient denoted as αDSM and variance of noise denoted as σDSM.
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