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Abstract

The Bayesian two-step change point detection method is popular for the Hawkes
process due to its simplicity and intuitiveness. However, the non-conjugacy be-
tween the point process likelihood and the prior requires most existing Bayesian
two-step change point detection methods to rely on non-conjugate inference meth-
ods. These methods lack analytical expressions, leading to low computational
efficiency and impeding timely change point detection. To address this issue, this
work employs data augmentation to propose a conjugate Bayesian two-step change
point detection method for the Hawkes process, which proves to be more accurate
and efficient. Extensive experiments on both synthetic and real data demonstrate
the superior effectiveness and efficiency of our method compared to baseline meth-
ods. Additionally, we conduct ablation studies to explore the robustness of our
method concerning various hyperparameters. Our code is publicly available at
https://github.com/Aurora2050/CoBay-CPD.

1 Introduction

Point process data, characterized by a series of discrete events occurring over time, finds extensive
applications in various domains, including finance [1], neuroscience [29], and social networks [20].
Hawkes processes [8], a subclass of point processes, have gained attention due to their ability to
model self-exciting and clustering behaviors. However, traditional modeling of Hawkes processes
relies on the assumption that the parameters of the process, i.e., the distribution of the process, remain
invariant over time. In practice, this assumption often fails to hold, as the underlying dynamics of
point process data can change over time [23; 27].

The violation of the time-invariant parameter assumption poses a significant challenge in accurately
modeling Hawkes process data. Real-world processes are inherently dynamic and subject to various
influences, leading to fluctuations in process distribution. For instance, in a social media platform, the
intensity of user interactions may change due to a sudden surge in activity during an emergency event
or a significant drop in user engagement during a service outage. To address this issue, the change
point detection (CPD) has emerged as a pivotal task in analyzing point process data. CPD aims to
identify the locations where the parameters (distribution) of the process undergo a significant change.

In this work, our focus is on CPD within Hawkes process. Previous studies have tackled this issue,
offering diverse methodologies for this purpose [2; 4; 23; 27]. Among these, the two-step estimation-
prediction method [4] has gained widespread application due to its simplicity and intuitiveness. This
method involves using historical data to estimate model parameters and then utilizing these estimated
parameters to estimate the distribution of the next event point. If the observed point aligns closely
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with the prediction, model parameters are assumed unchanged. But if there’s a notable deviation, it
suggests parameter change, indicating a current change point.

An issue with the estimation-prediction method lies in the inaccurate estimation of model parameters.
This issue stems from the constraints within the CPD system: on one hand, for efficient detection, we
cannot use a large amount of historical data as it would lead to a heavy computational burden; on the
other hand, once a change point is identified, the reliance on samples post-change point for estimating
subsequent model parameters restricts the availability of adequate data for initial post-change point
estimations. This often results in inaccurate parameter estimations due to our reliance on a limited
historical dataset, subsequently affecting the prediction of the next event point. As a consequence,
the algorithm may wrongly identify many non-change points as change points (false positives) and
vice versa (false negatives).

To alleviate the aforementioned issues, many studies propose utilizing Bayesian approaches. Com-
pared to frequentist methods, Bayesian methods exhibit better robustness as they not only consider
samples but also incorporate prior knowledge. When data is limited, prior knowledge acts as regular-
ization, effectively preventing overfitting. Specifically, the Bayesian estimation-prediction method
estimates the posterior distribution of model parameters based on historical data and then leverages
this posterior distribution to estimate the predictive distribution of the next event point. This predictive
distribution considers all possible model specifications, which differs from the frequentist method.
Similarly, if the observed point closely matches the prediction, it indicates no change point, suggesting
unchanged model parameters. Conversely, a significant deviation suggests a change point2.

Past studies have investigated the Bayesian Hawkes process [10; 21]. Due to the non-conjugacy
between point process likelihoods and any priors, inferring the posterior of Hawkes process pa-
rameters presents significant challenges. Currently, the majority of work utilizes methods such
as Markov chain Monte Carlo (MCMC) [18] or variational inference [3] to infer the posterior in
non-conjugate scenarios. Inference methods derived in such non-conjugate scenarios often lack
analytical expressions, leading to low computational efficiency. Therefore, they are not well-suited
for the CPD system, which requires timeliness.

To address this challenge, this paper employs a data augmentation strategy recently proposed in the
Bayesian point process field [5; 15; 26; 29; 30]. This strategy augments the Hawkes process likelihood
with auxiliary latent variables, enabling the augmented Hawkes process likelihood conditionally
conjugate to the prior. Leveraging the conditionally conjugate model, we can derive an analytical
Gibbs sampler that enables closed-form iterative sampling. The effectiveness and efficiency of our
proposed method are demonstrated through experiments using both synthetic and real data.

Specifically, we make the following contributions: (1) We propose the conjugate Bayesian two-step
change point detection (CoBay-CPD) for Hawkes process, which leverages data augmentation to
address the non-conjugate issue. This novel method allows for more accurate and efficient CPD
in Hawkes process. (2) We develop an analytical Gibbs sampler tailored for the proposed model,
enabling closed-form iterative sampling of the model parameters. This streamlines the inference
process and alleviates the computational burden associated with non-conjugate scenarios. (3) The
experiments demonstrate that our method achieves accurate and timely detection of change points
in Hawkes process compared to baseline models, which highlights its practical applicability across
various dynamic event modeling scenarios.

2 Related Works

In this section, we delve into the existing literature concerning CPD and Bayesian inference for
Hawkes processes.

2.1 Change Point Detection for Hawkes Process

CPD in Hawkes processes has remained an exceptionally challenging endeavor. Within the frequentist
framework, several methods have been proposed. For instance, techniques based on second-order
statistics have been introduced [27], as well as approaches leveraging the cumulative sum (CUSUM)

2Here, “Bayesian” refers to the Bayesian treatment of model parameters; for the change point, it remains a
point estimation.
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method [23] and sequential testing strategies [2]. However, Bayesian approaches have remained
underexplored. A pioneering contribution by [4] introduced a Bayesian approach based on Stein
variational inference [13] tailored for Hawkes processes. However, this method derived in non-
conjugate scenarios lacks analytical expressions, leading to low computational efficiency. Subsequent
experiments demonstrate that our CoBay-CPD significantly enhances the computational efficiency.

2.2 Bayesian Inference for Hawkes Process

The Bayesian Hawkes process has been a hot topic in research, broadly categorized into two classes:
parametric and non-parametric methods. Parametric approaches [12; 21] involve applying priors
to parameters in Hawkes process and inferring the posterior. Non-parametric methods [24; 25; 28],
offering greater flexibility than parametric ones, model the background rate and influence function
(refer to Eq. (1)) as flexible functions, apply priors (commonly Gaussian processes) on these functions,
and aim to infer the posterior of these functions. As the point process likelihood is not conjugate to
any priors, both parametric and non-parametric approaches face challenges in posterior inference.
Most studies rely on methods such as MCMC, variational inference, or Laplace approximation [14].

2.3 Data Augmentation for Hawkes Process

In recent years, the Bayesian point process field has introduced a novel data augmentation technique
to address non-conjugate inference challenges. This method introduces auxiliary latent variables into
point process likelihood, transforming non-conjugate problems into conditionally conjugate ones, and
thus enabling the derivation of fully analytical inference algorithms. Parametric studies are referenced
in [29; 30], while non-parametric research is detailed in [16; 22; 26]. With analytical expressions,
the inference algorithms based on data augmentation exhibit higher computational efficiency than
the non-analytical ones derived in non-conjugate scenarios. Our study adopts the data augmentation,
opting for a computationally more efficient parametric approach to ensure the efficiency of CPD.

3 Methodology

In this section, we present our proposed CoBay-CPD method for Hawkes process. We outline its key
derivation steps while providing further details in Appendix A.

3.1 Hawkes Process with Inhibition

The mathematical foundation of Hawkes process is defined by the conditional intensity function
that represents the instantaneous rate of event occurrences at time t given the history up to but not
including t. It is defined as follows:

λ∗(t) = λ(t|Ht−) = µ+
∑
ti<t

ϕ(t− ti), (1)

where µ is the background rate, ϕ(·) is the influence function representing the self-excitation effect
from event occurring at ti to t, the summation captures the influence of all past events, Ht− is the
historical information up to but not including t, and ∗ indicates the intensity depends on the history.
The self-exciting property of Hawkes processes allows events to trigger additional events, leading to
clustering and bursty behavior in event sequences.

Traditional Hawkes processes only employ positive influence functions to avoid negative intensity,
limiting them to capturing excitatory interactions. To incorporate both excitatory and inhibitory
effects, many studies [7; 11; 17] have proposed nonlinear Hawkes process that allows the influence
functions to be negative. This study adopts the nonlinear Hawkes process proposed by [30] which is
defined as:

λ∗(t) = λ̄σ(h(t)), h(t) = µ+
∑
ti<t

ϕ(t− ti),

where λ̄ > 0 is the intensity upperbound, σ(·) denotes the sigmoid function, µ ∈ R is the baseline
activation and ϕ(·) ∈ R is the influence function. Due to the presence of the sigmoid function σ(·),
both µ and ϕ(·) can be negative, allowing it to capture inhibitory effects. We choose the sigmoid as
the link function due to its compatibility with the subsequent data augmentation technique.
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For a flexible influence function, we model ϕ(·) as a linear combination of multiple basis functions:

ϕ(·) =
B∑

b=1

wbϕ̃b(·),

where ϕ̃b(·) is the b-th basis function and wb ∈ R is the mixing weight. Following [30], we select the
scaled and shifted beta densities with support [0, Tϕ] as basis functions. We define the basis function
with bounded support [0, Tϕ] rather than unbounded support [0,∞] to assume that events occurring
too early do not influence the current time. This choice ensures a more efficient computation of Φ(t)
afterward (details are provided in complexity analysis). Consequently, the formulation of h(t) can be
expressed in vector form:

h(t) = µ+
∑
ti<t

ϕ(t− ti) = µ+
∑
ti<t

B∑
b=1

wbϕ̃b(t− ti) = µ+

B∑
b=1

wb

∑
ti<t

ϕ̃b(t− ti) = w⊤Φ(t),

where w = [µ,w1, . . . , wB ]
⊤, Φ(t) = [1,Φ1(t), . . . ,ΦB(t)]

⊤ and Φb(t) =
∑

ti<t ϕ̃b(t − ti)
represents the cumulative impact of past events on t through the b-th basis function. As a result, the
probability density function of the proposed model is:

p(t1:N |w, λ̄) =

N∏
i=1

λ̄σ(h(ti)) exp

(
−
∫ T

0

λ̄σ(h(t))dt

)
,

where we assume t1:N are observed on [0, T ] and the model parameters are w and λ̄.

3.2 Non-conjugate Bayesian CPD

The above section outlines the Hawkes process without change points. In this section, we introduce
the Hawkes process with change points and how the Bayesian two-step CPD is designed to detect
these change points. In Bayesian two-step CPD, our goal is to identify the change point where the
underlying dynamics of point process shift. The two steps in this method involve an estimation step
and a prediction step. Let t1:m represent the sequence of timestamps that is generated by a Hawkes
process with parameters θ, and we consider θ may undergo changes at certain timestamps. We define,
for the timestamp tm, the nearest change point’s index as τm ∈ {1, . . . ,m} and assume that the
timestamps before and after the change point are mutually independent. Following this assumption,
during the estimation step, the Bayesian two-step CPD necessitates estimating the posterior of the
model parameters based on tτm:m. To infer the posterior, we express the likelihood for the timestamps
tτm:m after the change point as:

p(tτm:m|w, λ̄) =

m∏
i=τm

λ̄σ(h(ti)) exp

(
−
∫ tm

tτm

λ̄σ(h(t))dt

)
. (2)

According to Bayes’ theorem, the posterior of model parameters is expressed as:

p(w, λ̄|tτm:m) ∝ p(tτm:m|w, λ̄)p(w)p(λ̄), (3)

where we choose the prior of w as Gaussian p(w) = N (w|0,K) and the prior of λ̄ as an uninfor-
mative improper prior p(λ̄) ∝ 1/λ̄. We use a Gaussian prior on w because it is equivalent to an L2

regularizer, which stabilizes parameter estimation when there is insufficient observed data.

Then, in the prediction step, we leverage the posterior of model parameters to compute the predictive
distribution of the next timestamp as:

p(tm+1|tτm:m) =

∫∫
p(tm+1|tτm:m,w, λ̄)p(w, λ̄|tτm:m)dwdλ̄. (4)

This formula calculates the distribution of the next timestamp tm+1 given the observed data points
tτm:m. It is worth noting that this predictive distribution takes into account all possible model
specifications, which is a key distinction between Bayesian and frequentist methods.

In implementation, solving Eqs. (3) and (4) is challenging. For Eq. (3), the non-conjugate nature
between the point process likelihood and the prior prevents us from obtaining an analytical posterior.
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For Eq. (4), evaluating the integral is also intractable. Therefore, we resort to sampling methods for
approximation: (1) Use MCMC to obtain parameter samples from the posterior {w(k), λ̄(k)}Kk=1 ∼
p(w, λ̄|tτm:m). (2) Based on the sampled parameters, use the thinning algorithm [19] to sample the
next timestamp {t(k)m+1 ∼ p(tm+1|tτm:m,w(k), λ̄(k))}Kk=1. Create a confidence interval based on the
samples of {t(k)m+1}Kk=1. If the actual tm+1 falls within this interval, we conclude that no change point
has occurred. Conversely, we infer the presence of a change point.

3.3 Conjugate Bayesian CPD

For non-conjugate Bayesian CPD, the MCMC algorithm in step 1 often lacks analytical expressions,
significantly impacting the timeliness of CPD due to its low computational efficiency. To address this
issue, our CoBay-CPD adopts the data augmentation strategy, which augments the Hawkes process
likelihood with auxiliary latent variables, enabling the augmented likelihood conditionally conjugate
to the prior. Based on the conditionally conjugate model, we derive an analytical Gibbs sampler
to effectively obtain posterior samples of parameters. Specifically, we incorporate Pólya-Gamma
variables and marked Poisson processes. Similar derivations have been presented in [30]; here we
restate the key formulas for clarity.

3.3.1 Augmentation of Pólya-Gamma Variables

The sigmoid function σ(·) can be represented in the form of a Gaussian scale mixture:

σ(z) =

∫ ∞

0

ef(ω,z)pPG(ω|1, 0)dω,

where f(ω, z) = z/2− z2ω/2− log 2 and pPG(ω|1, 0) denotes the Pólya-Gamma distribution with
ω ∈ R+. When substituting the above expression into the product term in Eq. (2), the parameter w
within the model takes on a Gaussian form.

3.3.2 Augmentation of Marked Poisson Process

A marked Poisson process can be introduced to linearize the exponential integral term in Eq. (2):

exp

(
−
∫ tm

tτm

λ̄σ(h(t))dt

)
= Epλ

 ∏
(ω,t)∈Π

ef(ω,−h(t))

 ,

where Π = {(ωr, tr)}Rr=1 denotes a realization of a marked Poisson process on the interval [tτm , tm],
with its probability measure denoted as pλ and having an intensity λ(t, ω) = λ̄pPG(ω|1, 0). Notably,
the key difference between our proposed change point model and the prior work by [30] lies in the
fact that here, we focus on the interval with change points, [tτm , tm], rather than the entire domain.

3.3.3 Augmented Joint Distribution

After introducing two sets of latent variables into Eq. (2), we obtain the augmented likelihood:

p(tτm:m,ω,Π|w, λ̄) =

m∏
i=τm

[λ(ti, ωi)e
f(ωi,h(ti))]pλ(Π|λ̄)

∏
(ω,t)∈Π

ef(ω,−h(t)),

where ω is the vector of ωi on each ti in tτm:m, λ(ti, ωi) = λpPG(ωi|1, 0). The parameter w in the
augmented likelihood takes on a Gaussian form, making it conditionally conjugate to the Gaussian
prior. Combining the augmented likelihood with priors, we obtain the augmented joint distribution:

p(tτm:m,ω,Π,w, λ̄) = p(tτm:m,ω,Π|w, λ̄)p(w)p(λ̄).

3.3.4 Gibbs Sampler

Thanks to the conditional conjugacy of the augmented joint distribution, we can derive closed-form
conditional densities for all variables, naturally leading to an analytical Gibbs sampler (derivation
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provided in Appendix A):

p(ω|tτm:m,w) =

m∏
i=τm

pPG(ωi|1, h(ti)), (5a)

Λ(t, ω|tτm:m,w, λ̄) = λ̄σ(−h(t))pPG(ω|1, h(t)), (5b)

p(λ̄|tτm:m,Π) = pGa(λ̄|Nm +R, Tm), (5c)
p(w|tτm:m,ω,Π) = N (w|m,Σ). (5d)

In Eq. (5c), Nm = m − τm + 1, R = |Π| is the number of points on the marked Poisson
process, and Tm = tm − tτm . In Eq. (5d), Σ = [ΦDΦ⊤ + K−1]−1 where D is a diagonal
matrix with {ωi}mi=τm

in the first m− τm + 1 entries and {ωr}Rr=1 in the following R entries, and
Φ = [{Φ(ti)}mi=τm

, {Φ(tr)}Rr=1]; m = ΣΦv, where the first m− τm + 1 entries of v are 1/2, and
the following R entries are −1/2. Through iterative sampling using Eq. (5), we obtain a series of
samples from the model parameter posterior. The pseudocode is provided in Appendix B.1.

3.3.5 Algorithm, Hyperparameters and Complexity

By employing the proposed Gibbs sampler for analytical posterior sampling of model parameters
and subsequently using the thinning algorithm for prediction, we establish our two-step CoBay-CPD
tailored for Hawkes process. The detailed procedure is outlined in Appendix B.2.

CoBay-CPD’s hyperparameters, including covariance K in the Gaussian prior, confidence intervals,
and basis functions, impact its performance. In experiments, we assume K = σ2I. Oversized σ2

weakens the prior, causing unstable parameter estimation and oversensitive change point detection,
while undersized values result in sluggish detection. Similarly, narrow confidence intervals oversen-
sitize, and wide intervals slow detection. Balancing accuracy and efficiency, more basis functions
enhance prediction accuracy but challenge computational efficiency. In experiments, we select all
hyperparameters through cross-validation.

Assuming the length of the entire sequence is N , the average length of tτm:m is M , the average
length of the latent marked Poisson process is R, the average number of points within the interval of
Tϕ is Nϕ, and the number of Gibbs iterations is L, the computation complexity of CoBay-CPD is
O(N(MNϕB + LRNϕB + LCTH + L(M + R)(B + 1)2 + L(B + 1)3)), where CTH represents
the complexity of the thinning algorithm. The detailed analysis is provided in Appendix C.

4 Experiments

We evaluate the performance of CoBay-CPD on both synthetic and real-world datasets. For the
synthetic data, our aim is to validate the capability of CoBay-CPD in accurately recovering the
ground-truth parameters and change points. For the real-world data, we compare CoBay-CPD against
several baseline methods to determine whether our approach exhibits superior CPD performance.

4.1 Baselines

We conduct a comparison between CoBay-CPD and several Bayesian change point detection (BCPD)
methods which are designed to address the non-conjugate challenge for Hawkes process: (1)
SMCPD [6] combines BCPD and sequential Monte Carlo (SMC). Similar to our approach, it
is a sampling-based method to address the non-conjugate inference in the BCPD framework. (2)
SVCPD [4] similarly combines BCPD and Stein variational inference to address the non-conjugate
inference in the BCPD framework. Differently, this method infers the posterior of model parameters
by the variational technique. (3) SVCPD+Inhibition is an extension of SVCPD that incorporates
a nonlinear Hawkes process with inhibitory effects. This baseline is designed because the original
SVCPD only considered a linear Hawkes process.

4.2 Metrics

We use four metrics to assess the performance of all methods. (1) False Negative Rate (FNR)
quantifies the probability of a change point being incorrectly identified as not a change point,
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Table 1: The FNR, FPR, MSE and RT of CoBay-CPD and other baselines on the synthetic dataset.

Model FNR(↓) FPR(% ↓) MSE(↓) RT(minute ↓)

SMCPD 0.38 ± 0.41 0.76 ± 0.26 0.07 ± 0.01 5.50 ± 0.31
SVCPD 0.50 ± 0.35 0.76 ± 0.26 0.06 ± 0.00 7.78 ± 0.01

SVCPD+Inhi 0.33 ± 0.24 0.60 ± 0.00 0.16 ± 0.01 23.09 ± 0.60
CoBay-CPD 0.13 ± 0.22 0.46 ± 0.26 0.05 ± 0.00 4.62 ± 0.10

calculated as 1 − True Positives
True Positives+False Negatives . False negative cases are critical in many applications,

as they indicate that certain crucial changes fail to receive attention. (2) False Positive Rate
(FPR) quantifies the probability of a stable point being incorrectly identified as a change point,
calculated as 1− True Negatives

False Positives+True Negatives . Minimizing false positive cases is also important because
frequent false alarms will waste resources. (3) Mean Square Error (MSE) measures the distance
between the predicted next timestamp (the average of t(k)) and the actual timestamp, calculated as
1
n

∑n
i=1(t̄

(k)
i − ti)

2. This metric evaluates how accurately the model predicts the next data point. (4)
Running Time (RT) measures the efficiency of the method by its runtime.

4.3 Synthetic Data

We validate the efficacy of CoBay-CPD using a synthetic dataset. Our goal is to verify whether
CoBay-CPD can accurately recover the ground-truth parameters and change points.

Datasets The synthetic data is created by concatenating three segments of Hawkes process data,
each characterized by different parameters. Specifically, all three segments of Hawkes processes
adhere to the model configuration outlined in Section 3.1, with their influence functions assumed to
be a mixture of multiple beta densities. Three segments employ identical basis functions and mixing
weights. However, they have different intensity upperbounds, namely λ̄1 = 5, λ̄2 = 10 and λ̄3 = 3.
We utilize the thinning algorithm to simulate data for three Hawkes processes, and concatenate them
to form the synthetic data. The two change points are located at the 43-rd and 136-th points, indicated
by grey lines in Fig. 1a in Appendix D.2. Further details can be found in Appendix D.

Results We evaluate the performance of change point detection using CoBay-CPD and other
baseline models on the synthetic dataset. For CoBay-CPD, we adopt a prior distribution p(w) =
N (w|0,K), where K = 0.5I. The detection outcomes are presented in Fig. 1a in Appendix D.2. The
change points identified by CoBay-CPD are 44, 136, while SMCPD detects 96, 136, SVCPD detects
44, 96 and SVCPD+Inhibition detects 51, 136. This discrepancy suggests that CoBay-CPD achieves
more accurate change point detection. Furthermore, the estimated parameter λ̄ from CoBay-CPD for
the synthetic data is depicted in Fig. 1b in Appendix D.2. The estimated parameter λ̄ closely aligns
with the ground truth, demonstrating the accuracy of parameter estimation by CoBay-CPD. Notably,
there are prominent changes around the change points in Fig. 1b. This phenomenon arises due to the
initiation of a new Hawkes process with distinct parameters at the occurrence of a change point. The
challenge of accurately estimating parameters with limited data in such scenarios is alleviated by the
Bayesian framework. In similar situations, frequentist methods tend to perform poorly.

We also compare CoBay-CPD against baseline methods in terms of FNR, FPR, MSE and RT. The
results are presented in Table 1. As anticipated, CoBay-CPD outperforms the alternatives. This
superiority can be attributed to CoBay-CPD’s utilization of a nonlinear Hawkes process model, which
encompasses both excitation and inhibition effects. In contrast, SMCPD and SVCPD employ a
simpler linear Hawkes process model, constraining their expressive power. Additionally, CoBay-CPD
employs Gibbs sampler to accurately characterize the parameter posterior, whereas both SVCPD and
SVCPD+Inhibition utilize variational-based methods to approximate the parameter posterior. As a
result, their change point detection accuracy is compromised.

4.4 Real-world Data

In this section, we conduct a comparison between CoBay-CPD and baselines on two real datasets.
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Table 2: The FNR, FPR, MSE and RT of CoBay-CPD and other baselines on real-world datasets.

Model WannaCry NYC Vehicle Collisions

FNR(↓) FPR(↓) MSE(×102 ↓) RT(minute ↓) FNR(↓) FPR(% ↓) MSE(↓) RT(minute ↓)

SMCPD 0.38 ± 0.06 0.02 ± 0.01 3.59 ± 0.08 11.65 ± 0.07 0.56 ± 0.16 2.46 ± 0.55 0.02 ± 0.00 24.67 ± 0.26
SVCPD 0.34 ± 0.12 0.01 ± 0.01 3.47 ± 0.06 9.72 ± 0.06 0.58 ± 0.36 1.00 ± 0.43 0.02 ± 0.00 19.30 ± 0.09

SVCPD+Inhi 0.54 ± 0.09 0.00 ± 0.00 3.54 ± 0.06 29.76 ± 2.54 0.22 ± 0.16 1.55 ± 0.36 0.17 ± 0.01 64.47 ± 1.36
CoBay-CPD 0.21 ± 0.04 0.05 ± 0.02 3.42 ± 0.00 6.24 ± 0.49 0.13 ± 0.16 0.89 ± 0.16 0.01 ± 0.00 8.70 ± 0.26

Table 3: Ablation study. The FNR, FPR, MSE and RT of CoBay-CPD with different hyperparameters.

Metric Number of Basis Functions Confidence Interval Prior Covariance

1 2 3 95% 90% 85% σ2 = 0.01 σ2 = 0.5 σ2 = 10

FNR(↓) 0.38 ± 0.41 0.38 ± 0.22 0.13 ± 0.22 0.50 ± 0.00 0.13 ± 0.22 0.25 ± 0.25 0.13 ± 0.22 0.13 ± 0.22 0.50 ± 0.00
FPR(% ↓) 1.07 ± 0.50 0.91 ± 0.30 0.61 ± 0.00 0.46 ± 0.26 0.46 ± 0.26 1.83 ± 0.43 0.76 ± 0.26 0.46 ± 0.26 0.91 ± 0.30
MSE(↓) 0.05 ± 0.00 0.05 ± 0.00 0.05 ± 0.00 0.04 ± 0.00 0.05 ± 0.00 0.04 ± 0.00 0.04 ± 0.00 0.05 ± 0.00 0.05 ± 0.01

RT(minute ↓) 1.57 ± 0.03 2.61 ± 0.08 3.62 ± 0.10 5.03 ± 0.02 4.62 ± 0.10 4.50 ± 0.11 4.74 ± 0.02 4.62 ± 0.10 4.41 ± 0.10

Datasets We analyze two datasets from the domains of network security and transportation, with
specific details provided below. More comprehensive information regarding data preprocessing can
be found in Appendix E. (1) WannaCry Cyber Attack3 [4]: The WannaCry virus infected more
than 200,000 computers around the world in 2017 and received much attention. The WannaCry
Cyber Attack data contains 208 traffic logs information observations. Each observation contains the
relevant timestamp. (2) NYC Vehicle Collisions4 [27]: The New York City vehicle collision dataset
comprises approximately 1.05 million vehicle collision records, each containing information about
the time and location of the collision. For our experiments, we select the records from Oct.14th, 2017.

The real-world data, unlike synthetic data, does not have ground-truth change points. Therefore, we
use the points where timestamps surge as the ground-truth change points in the WannaCry dataset,
and utilize the reported change points from [27] as the ground-truth change points in the NYC dataset.

Results Figures 3a to 3d in Appendix E.2 display the change point detection outcomes of different
methods applied to WannaCry data. It is clear that CoBay-CPD exhibits the most favorable detection
performance. The change points identified by our method are consistent with the actual change points.
The SMCPD, SVCPD and SVCPD+Inhibition detect a relatively limited number of change points,
resulting in missed change points. Table 2 presents various metrics of four methods for change point
detection in the WannaCry data. Clearly, because SMCPD, SVCPD, and SVCPD+Inhibition detect
too few change points, their FNR is high and FPR is low. In contrast, CoBay-CPD exhibits the lowest
FNR, a reasonably balanced FPR, the smallest MSE, and requires the least runtime.

Figures 4a to 4d in Appendix E.2 show the change point detection outcomes of four methods for the
NYC data. Notably, SVCPD detects fewer change points, while SMCPD identify an excessive number.
The change points detected by CoBay-CPD are 43, 110, 160, 194, 284, 338, 398, corresponding to
the times 2:30, 9:00, 12:00, 13:10, 16:00, 17:55, 20:00. These timestamps coincide with peak traffic
hours on workdays. Table 2 presents various metrics of four methods for change point detection in the
NYC data. Consistently, SMCPD exhibits high FNR and FPR. The high FPR is due to an excessive
number of change points detected by SMCPD, while the high FNR is due to the inaccurate detection
of numerous change points by SMCPD. Whereas SVCPD shows a high FNR and low FPR due to
detecting too few change points. SVCPD+Inhibition achieves a relatively balanced FNR and FPR,
indicating the beneficial impact of employing a nonlinear Hawkes process. CoBay-CPD demonstrates
superior accuracy and efficiency, with the lowest FNR, FPR, MSE, and RT in change point detection
compared to all baseline models.

4.5 Ablation Study

In this section, we conduct hyperparameter analysis and stress tests of CoBay-CPD on synthetic data.

3https://www.malware-traffic-analysis.net/2017/05/18/index2.html
4https://data.cityofnewyork.us/Public-Safety/NYPD-Motor-Vehicle-Collisions/h9gi-nx95
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Table 4: The results of stress tests. We conduct experiments to verify the performance change
of CoBay-CPD w.r.t. the number of change points, the difference between adjacent λ̄’s, and the
closeness between two change points.

Metric Number of Change Points ∆λ̄ ∆t

1 2 3 0.1 1 5 5 10 15

FNR( ↓) 0.00 ± 0.00 0.13 ± 0.22 0.11 ± 0.14 1.00 ± 0.00 0.25 ± 0.43 0.00 ± 0.00 0.33 ± 0.24 0.00 ± 0.00 0.00 ± 0.00
FPR(% ↓) 0.43 ± 0.60 0.46 ± 0.26 0.31 ± 0.50 1.61 ± 0.57 0.35 ± 0.60 0.43 ± 0.60 1.00 ± 0.70 0.93 ± 0.65 0.31 ± 0.54
MSE( ↓) 0.04 ± 0.00 0.05 ± 0.00 0.07 ± 0.01 0.02 ± 0.00 0.03 ± 0.00 0.04 ± 0.00 0.01 ± 0.00 0.02 ± 0.00 0.02 ± 0.00

Number of Basis Functions The number of basis functions impacts the expressiveness of the
Hawkes process, influencing the model’s detection performance. We assess the model’s detection
performance across varying numbers of basis functions, from 1 to 3, as shown in the Table 3. In
experiment, we set the other hyperparameters as: 90% confidence interval and K = 0.5I. Observably,
as the number of basis functions increases, FNR and FPR decrease, indicating enhanced detection
accuracy, while RT increases, indicating increased computational burden.

Confidence Interval We try 3 different confidence intervals: 95%, 90%, and 85% for the next
timestamp, as shown in Table 3. In the experiment, we choose 4 basis functions and K = 0.5I. A
wider confidence interval results in fewer detected change points, leading to a larger FNR and a
smaller FPR. Conversely, a narrower confidence interval leads to the detection of more change points,
resulting in numerous incorrect change points. Consequently, the FPR increases significantly, while
the FNR also shows a slight rise. So the compromise, 90% confidence intervals, is the best.

Prior Covariance The Gaussian prior covariance K = σ2I also has a large impact on the detection
results. In this experiment, we choose 4 basis functions and 90% confidence interval. If σ2 is too
large, FNR and FPR will increase. This is because the prior is too loose, causing the posterior samples
of model parameters to spread excessively and fail to concentrate around the true values. On the
contrary, when σ2 is too small, the posterior samples of model parameters are too concentrated in a
certain position that may be a wrong value, resulting in a larger FPR, as shown in Table 3.

Stress Tests The stress tests assess how well a model performs under difficult or extreme conditions.
We conduct three stress tests experiments: one involving the number of change points (more indicating
greater difficulty), another focusing on the difference between adjacent λ̄’s, ∆λ̄ (smaller indicating
greater difficulty), and the third examining the closeness between adjacent change points, ∆t (smaller
indicating greater difficulty). The results are shown in Table 4. (1) Experiments with different
numbers of change points reveal consistent performance across varying numbers. (2) Regarding
∆λ̄, our model effectively detects change points even when ∆λ̄ is small (e.g., ∆λ̄ = 1). However,
excessively small ∆λ̄ values lead to decreased performance, as the parameters on both sides of the
change point become too similar to distinguish. (3) Regarding ∆t, the model maintains good even
when two change points are close, although performance slightly declines. More experimental details
can be found in Appendix F.

5 Limitations and Broader Impacts

Although our proposed CoBay-CPD method offers an efficient and accurate solution to the change
point detection problem in Hawkes process, it still has some limitations. For instance, extending
CoBay-CPD to multivariate Hawkes processes remains challenging because the current method
requires change points to occur at specific event locations. However, in multivariate Hawkes processes,
a change point in one dimension (an event location) does not necessarily correspond to event locations
in other dimensions. This challenge needs to be addressed further in future research.

The introduction of CoBay-CPD for Hawkes process holds promise for both positive and negative
social impacts. This method effectively addresses the non-conjugate inference challenge, improving
the efficiency and accuracy of change point detection across various fields. However, as automated
change point detection methods become more accurate and efficient, there is a risk of overreliance on
these systems without proper validation or human oversight. This could lead to erroneous decisions
or missed opportunities for critical interventions.
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6 Conclusions

In summary, this work introduces a novel conjugate Bayesian two-step change point detection method
for Hawkes process, which effectively addresses the non-conjugate inference challenge. Leveraging
data augmentation, we transform the non-conjugate inference problem to a conditionally conjugate
one, enabling the development of an analytical Gibbs sampler for efficient parameter posterior
sampling. Our proposed approach surpasses existing methods, showcasing superior accuracy and
efficiency in detecting change points. The contributions of this research hold great potential for
advancing event-driven time series analysis and change point detection across various applications.
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A Derivation of CoBay-CPD

In this section we provide proof of data augmentation and Gibbs sampler, respectively.

A.1 Data Augmentation

Focus on the interval with change points [tτm , tm], the probability density (likelihood) of CoBay-CPD
can be presented as:

p({ti}mi=τm |w, λ̄) =

m∏
i=τm

λ̄σ(h(ti)) exp

(
−
∫ tm

tτm

λ̄σ(h(t))dt

)
.

Substitute the augmentation of Pólya-Gamma Variables σ(z) =
∫∞
0

ef(ω,z)pPG(ω|1, 0)dω and the
sigmoid symmetry property σ(z) = 1− σ(−z) to the above equation, we can obtain:

exp

(
−
∫ tm

tτm

λ̄σ(h(t))dt

)
= exp

(
−
∫ tm

tτm

∫ ∞

0

(1− ef(ω,−h(t)))λ̄pPG(ω|1, 0)dωdt)

)
.

According to Campbell’s theorem [9], the exponential integral term can be rewritten as

exp

(
−
∫ tm

tτm

λ̄σ(h(t))dt

)
= Epλ

 ∏
(ω,t)∈Π

ef(ω,−h(t))

 ,

where Π = (ωr, tr)
R
r=1 denotes a realization of a marked Poisson process on the interval [tτm , tm],

with its probability measure denoted as pλ and having an intensity λ(ω, t) = λ̄pPG(ω|1, 0).
Therefore, the likelihood of CoBay-CPD can be rewritten as :

p({ti}mi=τm |w, λ̄) =

m∏
i=τm

λ̄σ(h(ti)) exp

(
−
∫ tm

tτm

λ̄σ(h(t))dt

)

=

m∏
i=τm

(∫ ∞

0

λ̄ef(ωi,h(ti)pPG(ωi|1, 0)dωi

)
Epλ

 ∏
(ω,t)∈Π

ef(ω,−h(t))


=

∫ ∫ m∏
i=τm

[λ(ti, ωi)e
f(ωi,h(ti))]pλ(Π|λ̄)

∏
(ω,t)∈Π

ef(ω,−h(t))dωdΠ,

where ω is the vector of ωi. It is straightforward to see the integrand is the augmented likelihood:

p({ti}mi=τm ,ω,Π|w, λ̄) =

m∏
i=τm

[λ(ti, ωi)e
f(ωi,h(ti))]pλ(Π|λ̄)

∏
(ω,t)∈Π

ef(ω,−h(t)).

A.2 Gibbs Sampler

Based on the augmented joint distribution

p({ti}mi=τm ,ω,Π,w, λ̄|τm) = p({ti}mi=τm ,ω,Π|w, λ̄, τm)p(w)p(λ̄),

we can derive the conditional densities of all variables in closed form. By sampling from these
conditional densities iteratively, we construct an analytical Gibbs sampler.

A.2.1 Derivation for ω

p(ω|{ti}mi=τm ,w) ∝
m∏

i=τm

[
λ(ti, ωi)e

f(ωi,h(ti))
] ∏
(ω,t)∈Π

ef(ω,−h(t)),
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where
∏

(ω,t)∈Π

ef(ω,−h(t)) is constant as Π is given. In addition, combined f(ω, z) = z/2− z2ω/2−

log 2 and pPG(ω|b, 0) · e−
c2ω
2 ∝ pPG(ω|b, c) with the above derivation, we can deduce that,

p(ω|{ti}mi=τm ,w) ∝
m∏

i=τm

[
λ̄pPG(ωi|1, 0)eh(ti)/2−h(ti)

2ω/2−log 2
]
∝

m∏
i=τm

pPG(ωi|1, h(ti)).

A.2.2 Derivation for Π

The posterior of Π is dependent on {ti}mi=τm
, w and λ̄,

p(Π|{ti}mi=τm ,w, λ̄) =
pλ(Π|λ̄)

∏
(ω,t)∈Π ef(ω,−h(t))∫

pλ(Π|λ̄)
∏

(ω,t)∈Π ef(ω,−h(t))dΠ
,

where Campbell’s theorem can be applied to convert the denominator, the equation above can be
transformed as

p(Π|{ti}mi=τm ,w, λ̄) =
pλ(Π|λ̄)

∏
(ω,t)∈Π ef(ω,−h(t))

exp
(
−
∫ tm
tτm

∫∞
0

(1− ef(ω,−h(t)))λ̄pPG(ω|1, 0)dωdt)
)

=
∏

(ω,t)∈Π

(
ef(ω,−h(t)))λ̄pPG(ω|1, 0)

)
exp

(
−
∫ tm

tτm

∫ ∞

0

ef(ω,−h(t))λ̄pPG(ω|1, 0)dωdt)

)
.

The above posterior is in the likelihood form of a marked Poisson process with intensity

Λ(t, ω|{ti}mi=τm ,w, λ̄) = ef(ω,−h(t)))λ̄pPG(ω|1, 0) = λ̄σ(−h(t))pPG(ω|1, h(t)).

A.2.3 Derivation for λ̄

p(λ̄|{ti}mi=τm ,Π) ∝
m∏

i=τm

[λ(ti, ωi)e
f(ωi,h(ti))]pλ(Π|λ̄) · 1/λ̄

∝
m∏

i=τm

[λ̄pPG(ω|1, h(ti))]pλ(Π|λ̄) · 1/λ̄,

where pPG(ω|1, h(t)) =
∏

(ω,t)∈Π

λ̄pPG(ω|1, 0)e
−

∫ tm
tτm

∫ ∞
0

λ̄pPG(ω|1,0)dωdt. So the above equation are

transformed as
p(λ̄|{ti}mi=τm ,Π) ∝ λ̄(m−τm+1+|Π|−1)e

−
∫ tm
tτm

dt·λ̄
.

Let Nm = m − τm + 1, R = |Π| is the number of points on the marked Poisson process, and
Tm = tm − tτm , then we can get

p(λ̄|{ti}mi=τm ,Π) = pGa(λ̄|Nm +R, Tm).

A.2.4 Derivation for w

For w, we utilize the Gaussian prior p(w) = N(w|0,K) where K is the prior covariance matrix.
Then the derivation for w is as follows

p(w|{ti}mi=τm ,ω,Π) ∝
B+1∏
b=1

1√
2πσ2

e−
(wb−µ)2

2σ2

m∏
i=τm

ef(ωi,h(ti))
∏

(ω,t)∈Π

ef(ω,−h(t)),

where h(t) = µ+
∑B

b=1 wb

∑
ti<t ϕ̃b(t− ti) and f(ω, z) = z/2− z2ω/2− log 2 and pPG(ω|b, 0) ·

e−
c2ω
2 ∝ pPG(ω|b, c). Therefore, we obtain

p(w|{ti}mi=τm ,ω,Π) = N(w|m,Σ),

where Σ = [ΦDΦ⊤+K−1]−1, where D is a diagonal matrix with {ωi}mi=τm
in the first m− τm+1

entries and {ωr}Rr=1 in the following R entries, and Φ = [{Φ(ti)}mi=τm
, {Φ(tr)}Rr=1]; m = ΣΦv,

where the first m− τm + 1 entries of v are 1/2, and the following R entries of v are −1/2.
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B Algorithm

B.1 Gibbs Sampler

Algorithm 1 Gibbs Sampler

Input: tτm:m, basis functions {ϕ̃b(·)}Bb=1, covariance K;
Output: Parameter posterior samples {w(k), λ̄(k)}Kk=1;

1: for iteration do
2: Sample ω by Eq. (5a);
3: Sample Π through thinning by Eq. (5b);
4: Sample λ̄ by Eq. (5c);
5: Sample w by Eq. (5d).
6: end for

B.2 CoBay-CPD

Algorithm 2 (m+ 1)-th round of CoBay-CPD

Input: tτm:m+1, basis functions {ϕ̃b(·)}Bb=1, covariance K;
Output: Change point at the current position or not;

1: Sample {w(k), λ̄(k)}Kk=1 by Appendix B.1;
2: Sample {t(k)m+1 ∼ p(tm+1|tτm:m,w(k), λ̄(k))}Kk=1 and create a confidence interval of {t(k)m+1},

e.g., the 5% and 95% quantiles denoted as tlm+1 and trm+1. If the actual tm+1 falls within the
interval [tlm+1, t

r
m+1], classify it as not a change point; otherwise, a change point.

C Analysis of Complexity

Assuming the length of the entire sequence is N , the average length of tτm:m is M , the average
length of the latent marked Poisson process is R, the average number of points within the interval of
Tϕ is Nϕ, and the number of Gibbs iterations is L, the computation complexity of CoBay-CPD is
O(N(MNϕB + LRNϕB + LCTH + L(M + R)(B + 1)2 + L(B + 1)3)), where CTH represents
the complexity of the thinning algorithm in marked poisson process, not in the prediction step. This
is because thinning algorithm in prediction step only samples one point at a time, which is very
fast, so its computational complexity can be ignored. We ignore the complexities of other sampling
operations since they are fast. The first term corresponds to the precomputation of Φ(t) on tτm:m, the
second term to the computation of Φ(t) on Π, the third term to the sampling of the marked Poisson
process, the fourth and fifth terms to the computation of mean and covariance. By limiting the
maximum length of tτm:m and Tϕ, we can reduce the values of M , Nϕ and R, thereby accelerating
the computation of Φ(t). Moreover, as the length of tτm:m decreases, CTH will decrease as well.

D Synthetic Data Experiment

D.1 Data Processing

We generate a synthetic data concatenated by three segments of Hawkes process data. In these three
segments of Hawkes process data, we assume 4 scaled beta densities: ϕ̃1,2,3,4 = Beta(α̃ = 50, β̃ =
50, scale = 6, shift = {−2,−1, 0, 1}) as the basis functions with support [0, Tϕ = 6] and µ = 0 as
the baseline activation. However, they have different intensity upperbounds, namely λ̄1 = 5, λ̄2 = 10
and λ̄3 = 3. We use the thinning algorithm to generate a sequence according to the intensity function
specified above.
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D.2 Result Presentation

In experiment, we assume the basis functions are same as the ground truth, and set the other
hyperparameters as 90% confidence interval and K = 0.5I. The estimation of λ̄ and the estimated
w = [µ,w1, . . . , w4]

⊤ from CoBay-CPD are shown in Fig. 1. We can see that, the estimated
parameter λ̄ and w = [µ,w1, . . . , w4]

⊤ of synthetic data from CoBay-CPD closely oscillates around
the true value, indicating the accuracy of parameter estimation by CoBay-CPD.
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Figure 1: Synthetic data: (a) the change point detection results of CoBay-CPD and alternatives,
illustrating the change point detection performance; (b) the estimated λ̄ from CoBay-CPD, indicating
the accuracy of parameter estimation of CoBay-CPD;(c)-(g) the estimated parameter (a) µ, (b) w1,
(c) w2, (d) w3 and (e) w4 of synthetic data from CoBay-CPD.

E Real-world Data Experiment

E.1 Data Processing

The preprocessing details of two real-world datasets are shown below.

WannaCry Cyber Attack In May 2017, the WannaCry virus infected more than 200,000 computers
worldwide, causing at least hundreds of millions of dollars in damage, and received much attention.
The WannaCry Cyber Attack data contains 208 traffic logs information observations. Each observation
contains the relevant timestamp. In this paper, the points where timestamps surge are taken as the
ground truth change points, shown in Fig. 2a.

NYC Vehicle Collisions The New York City vehicle collision dataset comprises approximately
1.05 million vehicle collision records, each containing information about the time and location of the
collision. For our experiments, we select the records from October 14th, 2017, which contains 477
vehicle collision records. We utilize the change points detected in [27] as the ground truth, shown in
Fig. 2b.
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Figure 2: (a) The WannaCry data with ground-truth change points (grey lines). (b) The NYC Vehicle
Collisions data with ground-truth change points (grey lines). The upper plot illustrates the increasing
of timestamps as events accumulate. The lower plot reverses the axes, representing a counting
process.
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(b) SMCPD
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(c) SVCPD
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(d) SVCPD+Inhibition

Figure 3: The WannaCry data. The upper plot illustrates the increasing of timestamps as events
accumulate. The lower plot reverses the axes, representing a counting process. The change point
detection result of (a) CoBay-CPD, (b) SMCPD, (c) SVCPD, (d) SVCPD+Inhibiton.

E.2 Results Presentation

For WannaCry, we adopt a prior distribution p(w) = N(w|0,K) for CoBay-CPD, where K is a
diagonal matrix with diagonal entries of 0.5. Moreover, we choose 90% confidence interval and 4
scaled shifted beta densities: ϕ̃1,2,3,4 = Beta(α̃ = 50, β̃ = 50, scale = 6, shift = {−2,−1, 0, 1}) as
basis functions. The complete graph of experimental results of four methods on WannaCry Cyber
Attack Dataset is shown in Fig. 3. Figures 3a to 3d display the change point detection outcomes of
different methods applied to WannaCry data. The blue line is the real data, the red solid line is the
mean of the predicted points, the green dotted line is the confidence interval, and the orange, purple,
yellow and turquoise line are the detected change point location.
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(b) SMCPD
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(c) SVCPD
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(d) SVCPD+Inhibiton

Figure 4: The NYC Vehicle Collisions data. The upper plot illustrates the increasing of timestamps
as events accumulate. The lower plot reverses the axes, representing a counting process. The change
point detection result of (a) CoBay-CPD, (b) SMCPD, (c) SVCPD, (d) SVCPD+Inhibiton.

For NYC Vehicle Collisions, we choose 4 scaled shifted beta densities: ϕ̃1,2,3,4 = Beta(α̃ = 10, β̃ =
30, scale = 6, shift = {−2,−1, 0, 1}) as basis functions, 90% confidence interval and K = 0.5I,
which is same as that in WannaCry. The change points in the NYC Vehicle Collisions are not as
obvious as those in the WannaCry, making change point detection a more challenging task for this
dataset. The complete graph of experimental results of four methods on NYC Vehicle Collisions
Dataset is shown in Fig. 4. The blue line is the real data, the red solid line is the mean of the predicted
points, the green dotted line is the confidence interval, and the orange, purple, yellow and turquoise
line are the detected change point location. Figures 4a to 4d show the change point detection outcomes
of four methods for the NYC data. Notably, SVCPD detects fewer change points, while SMCPD
identify an excessive number.

F Stress Tests

F.1 Test 1: Number of Change Points

We conduct a stress test with the number of change points: 1, 2, 3. We generate three sets of
synthetic data concatenated by some segments of Hawkes process data. In all these segments of
Hawkes process data, we assume 4 scaled beta densities: ϕ̃1,2,3,4 = Beta(α̃ = 50, β̃ = 50, scale =
6, shift = {−2,−1, 0, 1}) as the basis functions with support [0, Tϕ = 6] and µ = 0 as the baseline
activation. However, they have different intensity upperbounds. For # of change points = 1, we
let λ̄11 = 5, λ̄12 = 10; For # of change points = 2, we let λ̄21 = 5, λ̄22 = 10, and λ̄23 = 3; For
# of change points = 3, we let λ̄31 = 5, λ̄32 = 10, λ̄33 = 3, and λ̄34 = 8. We use the thinning
algorithm to generate these sequences according to the intensity specified above.
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F.2 Test 2: Difference between Adjacent Parameters

We conduct a stress test with ∆λ̄ = 0.1, 1, 5. We generate three sets of synthetic data by concatenating
two segments of Hawkes process data. Within each segment, we assume four scaled beta densities:
ϕ̃1,2,3,4 = Beta(α̃ = 50, β̃ = 50, scale = 6, shift = −2,−1, 0, 1) as the basis functions with support
[0, Tϕ = 6], and µ = 0 as the baseline activation. However, they possess different intensity upper
bounds. Specifically, for ∆λ̄ = 0.1, we set λ̄11 = 10 and λ̄12 = 10.1; for ∆λ̄ = 1, we set λ̄21 = 10
and λ̄22 = 9; for ∆λ̄ = 5, we set λ̄31 = 10 and λ̄32 = 5. We use the thinning algorithm to generate
these sequences according to the intensity specified above.

F.3 Test 3: Closeness between Adjacent Change Points

We conduct a stress test with ∆t = 5, 10, 15. Three sets of synthetic data are generated by concate-
nating three segments of Hawkes process data. Within each segment, we assume four scaled beta
densities: ϕ̃1,2,3,4 = Beta(α̃ = 50, β̃ = 50, scale = 6, shift = −2,−1, 0, 1) as the basis functions
with support [0, Tϕ = 6], and µ = 0 as the baseline activation. They have different intensity upper-
bounds λ̄1 = 10, λ̄2 = 5, and λ̄3 = 15. We use the thinning algorithm to generate these sequences
according to the intensity specified above. We adjust the data length of the second segment from 5 to
10 to 15, thereby controlling the interval ∆t between two adjacent change points from 5 to 10 to 15.

F.4 Stree Tests Supplements

Due to the page limit, we only presented the stress test results for our own method in the main paper.
However, based on a suggestion from an anonymous reviewer to include the stress test results for the
baselines, we have provided them in Tables 5 to 7.

Table 5: The FNR, FPR and MSE of CoBay-CPD and other baselines on synthetic dataset with
different number of change points.

Model 1 2 3

FNR(↓) FPR(% ↓) MSE(↓) FNR(↓) FPR(% ↓) MSE(↓) FNR(↓) FPR(% ↓) MSE(↓)

SMCPD 0.33 ± 0.47 0.63 ± 0.63 0.08 ± 0.03 0.38 ± 0.41 0.76 ± 0.26 0.07 ± 0.01 0.67 ± 0.19 1.23 ± 0.35 0.08 ± 0.01
SVCPD 0.67 ± 0.47 0.63 ± 0.95 0.06 ± 0.01 0.50 ± 0.35 0.76 ± 0.26 0.06 ± 0.00 0.50 ± 0.32 1.74 ± 0.65 0.15 ± 0.05

SVCPD+Inhi 0.33 ± 0.47 1.88 ± 0.63 0.08 ± 0.01 0.33 ± 0.24 0.60 ± 0.00 0.16 ± 0.01 0.28 ± 0.23 1.84 ± 0.50 0.09 ± 0.00
CoBay-CPD 0.00 ± 0.00 0.43 ± 0.60 0.04 ± 0.00 0.13 ± 0.22 0.46 ± 0.26 0.05 ± 0.00 0.11 ± 0.14 0.31 ± 0.50 0.07 ± 0.01

Table 6: The FNR, FPR and MSE of CoBay-CPD and other baselines on synthetic dataset with
different difference between adjacent λ̄’s (∆λ̄).

Model 0.1 1 5

FNR(↓) FPR(% ↓) MSE(↓) FNR(↓) FPR(% ↓) MSE(↓) FNR(↓) FPR(% ↓) MSE(↓)

SMCPD 1.00 ± 0.00 1.20 ± 0.00 0.06 ± 0.01 0.50 ± 0.50 0.70 ± 0.70 0.06 ± 0.02 0.33 ± 0.47 0.63 ± 0.63 0.08 ± 0.03
SVCPD 1.00 ± 0.00 2.41 ± 0.98 0.05 ± 0.01 0.83 ± 0.37 3.29 ± 1.05 0.06 ± 0.01 0.67 ± 0.47 0.63 ± 0.95 0.06 ± 0.01

SVCPD+Inhi 0.67 ± 0.47 1.41 ± 0.83 0.06 ± 0.00 0.33 ± 0.47 1.17 ± 0.52 0.06 ± 0.00 0.33 ± 0.47 1.88 ± 0.63 0.08 ± 0.01
CoBay-CPD 1.00 ± 0.00 1.61 ± 0.57 0.02 ± 0.00 0.25 ± 0.43 0.35 ± 0.60 0.03 ± 0.00 0.00 ± 0.00 0.43 ± 0.60 0.04 ± 0.00

Table 7: The FNR, FPR and MSE of CoBay-CPD and other baselines on synthetic dataset with
different closeness between two change points (∆t).

Model 5 10 15

FNR(↓) FPR(% ↓) MSE(↓) FNR(↓) FPR(% ↓) MSE(↓) FNR(↓) FPR(% ↓) MSE(↓)

SMCPD 0.42 ± 0.34 0.75 ± 0.75 0.03 ± 0.01 0.67 ± 0.24 0.23 ± 0.52 0.05 ± 0.01 0.17 ± 0.24 1.00 ± 0.83 0.07 ± 0.01
SVCPD 0.42 ± 0.19 1.24 ± 0.56 0.03 ± 0.01 0.75 ± 0.25 0.46 ± 0.65 0.05 ± 0.01 0.08 ± 0.19 3.01 ± 1.15 0.06 ± 0.01

SVCPD+Inhi 0.58 ± 0.19 1.24 ± 1.33 0.05 ± 0.01 0.25 ± 0.38 0.23 ± 0.52 0.05 ± 0.00 0.17 ± 0.24 2.01 ± 1.33 0.06 ± 0.00
CoBay-CPD 0.33 ± 0.24 1.00 ± 0.70 0.01 ± 0.00 0.00 ± 0.00 0.93 ± 0.65 0.02 ± 0.00 0.08 ± 0.19 0.80 ± 0.57 0.03 ± 0.00
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