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Abstract

Low-shot image classification is a fundamental task in
computer vision, and the emergence of large-scale vision-
language models such as CLIP has greatly advanced the
forefront of research in this field. However, most existing
CLIP-based methods lack the flexibility to effectively incor-
porate other pre-trained models that encompass knowledge
distinct from CLIP. To bridge the gap, this work proposes
a simple and effective probabilistic model ensemble frame-
work based on Gaussian processes, which have previously
demonstrated remarkable efficacy in processing small data.
We achieve the integration of prior knowledge by specify-
ing the mean function with CLIP and the kernel function
with an ensemble of deep kernels built upon various pre-
trained models. By regressing the classification label di-
rectly, our framework enables analytical inference, straight-
forward uncertainty quantification, and principled hyper-
parameter tuning. Through extensive experiments on stan-
dard benchmarks, we demonstrate that our method consis-
tently outperforms competitive ensemble baselines regard-
ing predictive performance. Additionally, we assess the ro-
bustness of our method and the quality of the yielded un-
certainty estimates on out-of-distribution datasets. We also
illustrate that our method, despite relying on label regres-
sion, still enjoys superior model calibration compared to
most deterministic baselines.

1. Introduction

The past few years have witnessed the trend of training
large-scale foundation models to serve as infrastructures for
processing images, texts, and multi-modal data [3, 7, 12,
20, 25, 45]. The increasing availability of off-the-shelf pre-
trained models is changing the standard practice for solving
specific downstream tasks for AI practitioners. One funda-
mental application in vision is adapting pre-trained models
for low-shot image classification. This eliminates the need
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for massive labeled data as in traditional cases, helps initiate
the data annotation process, and supports the construction
of complex recognition systems, among other advantages.

Fine-tuning and linear probing are typical approaches
for pre-trained models-based low-shot image classifica-
tion [5, 7, 8, 28]. Recently, vision-language models, e.g.,
CLIP [45], have significantly advanced zero-shot classifi-
cation where the image and semantics of interest are pro-
jected into a structured hidden space for nearest neighbor-
based classification. Nevertheless, the few-shot CLIP with
linear probing shows inferior results [45]. To address
this, researchers have put considerable effort into develop-
ing novel CLIP-based few-shot learning pipelines involving
techniques such as prompting learning [60], image-guided
prompt generation [44, 59], adapter tuning [15, 57], etc. De-
spite relatively good results, existing CLIP-based methods
usually lose the flexibility to incorporate other pre-trained
models that may contain complementary prior information.

CaFo [58] is a seminal work that explores construct-
ing few-shot predictors using pre-trained models other than
CLIP and demonstrates outperforming effectiveness. How-
ever, the ensemble weights in CaFo are determined heuris-
tically, and the learning requires extensive hyper-parameter
tuning. Furthermore, as a deterministic method, CaFo is
likely to overfit the few-shot training data and cannot pro-
vide accurate uncertainty estimates. These challenges are
particularly troublesome in situations with limited data and
high-risk domains.

This paper aims to assemble CLIP and other pre-trained
models in a more principled probabilistic manner. Given
that previous studies usually deploy a linear classification
head on top of the pre-trained models, we focus on its
Bayesian counterpart, i.e., a Gaussian process (GP) [54].
GP is an ideal model for low-shot image classification due
to its effectiveness with small data. To incorporate prior
knowledge from various pre-trained models, we suggest
defining the prior kernel as a combination of deep kernels
associated with various pre-trained models. Noting that the
prior mean implicitly corresponds to a model that makes
predictions without seeing any data, we specify it with the
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well-performing zero-shot CLIP classifier.
Such a modeling can address overfitting and result in

calibrated post-data uncertainty arising from posterior in-
ference. Further, the Bayesian framework allows for the
use of principled objectives for hyper-parameter tuning. For
example, we can use the marginal likelihood or predictive
likelihood of the GP model for hyper-parameter tuning fol-
lowing common practice.

We begin by assessing the predictive performance of
our proposed method on standard low-shot image classifi-
cation benchmarks and observe superior or competitive re-
sults compared to a variety of ensemble baselines. To eval-
uate the generalization capability of our method, we test the
trained models on natural out-of-distribution (OOD) data
and find that our method achieves outperforming results. In
addition, our method has the potential to yield calibrated
uncertainty estimates for OOD data. We further assess the
model calibration by inspecting Expected Calibration Error
(ECE) [16] and its more robust variant, Thresholded Adap-
tive Calibration Error (TACE) [40]. We also offer thorough
ablation studies to better understand the proposed method.

2. Related Works
Zero/few-shot classification. Few-shot classification

means making classifications based on a limited number
of observations, and the zero-shot one requires the trained
model to adapt to the new task without any observation.
Meta-learning has demonstrated its potential as a viable ap-
proach for zero/few-shot learning [48, 51]. Recently, bene-
fiting from the learning on web-scale data, large pre-trained
vision-language models like CLIP have demonstrated im-
pressive performance in zero/few-shot image classification.
Since then, continual effort has been made to better adapt
CLIP to downstream few-shot tasks [15, 17, 52, 57–60]. In
particular, CoOp [60] optimizes a collection of learnable
prompt tokens for few-shot adaptation. Tip-Adapter [57]
augments the zero-shot CLIP classifier with a linear key-
cache cache model to further enhance the classification per-
formance. CaFo [58] supplements Tip-Adapter with one
further linear key-cache cache model for knowledge in-
tegration. Although effective, the deterministic nature of
these methods makes them tend to overfit the few-shot train-
ing data and struggle to estimate predictive uncertainty.

Pre-trained models in vision and beyond. We have
witnessed the change of model architectures in vision from
VGG [49] and ResNet [18] to ViT [13] and Swin Trans-
former [34]. The dominant learning paradigm has under-
gone a transformation, where pre-training models on ex-
tensive datasets and then utilizing them for downstream
tasks via fine-tuning [19] has become a widespread prac-
tice. MoCo [9] and DINO [5] are recent representative
pre-trained models, enjoying the ability to generate high-
quality representations. Visual pre-trained models are in-

strumental in achieving state-of-the-art performance on di-
verse downstream tasks such as object detection [33], se-
mantic segmentation [6], and so on. Recently, visual-
language pre-training has achieved impressive success by
learning from massive image-text pairs gathered from the
internet [25, 32, 45], demonstrating astonishing perfor-
mance on various downstream vision and language tasks.
We have reached the consensus that pre-trained models
can serve as containers of valuable prior knowledge, but
a proper mechanism for effective knowledge integration is
under-explored, which is alleviated by this work.

Deep Gaussian processes. GPs are a well-studied and
powerful probabilistic tool in machine learning [54]. They
share a deep connection with neural networks (NNs) with
infinite width [24, 31, 37]. There exists an interesting corre-
spondence among linear regression, Bayesian linear regres-
sion, and GP regression, with the last one often preferred
in low-data regimes. GPs have been successfully used to
solve classification problems based on approximations [38].
However, GPs built on classic kernels lack the inductive
bias carried by NNs. To address this, deep kernel learn-
ing (DKL) [4, 55] has been proposed to leverage deep NNs
for nonlinear data projection, which is then fed to classic
kernels. In the context of few-shot learning, deterministic
methods with a linear classification head face challenges of
overfitting to the training set and are unable to accurately
quantify uncertainty. This limitation restricts their applica-
bility in high-risk domains. In contrast, GPs offer a viable
remedy to these pathologies.

3. Preliminary
This section reviews the basics of GP regression and

deep kernel learning. We use D = {xi,yi}Ni=1 to denote
a dataset with xi ∈ X ⊂ RL and yi ∈ RC as the L-dim in-
puts and C-dim targets respectively. Let X = {xi}Ni=1 and
Y = {yi}Ni=1 represent the training data. Let Xval and Yval

represent the validation data (can be split from the training
data) and X∗ = {x∗

i }Mi=1 represent the test data.

3.1. From Deterministic to Bayesian

To deal with the learning problem on the above dataset, it
is common practice to train a deterministic model f : X →
RC using maximum likelihood estimation or maximum a
posteriori principle. Despite effectiveness, the approach can
suffer from detrimental overfitting and struggle to reason
about model uncertainty appropriately. These issues are ex-
acerbated when only limited data is available.

Practitioners can turn to Bayesian learning approaches to
address such issues. In Bayesian learning, a prior distribu-
tion over model parameters is introduced, and the Bayesian
posterior is (approximately) computed. Then, we compute
the posterior predictive distribution to predict for a new da-
tum, where all likely model specifications are considered.
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The uncertainty can be quantified by certain statistics that
capture the degree of variation in that distribution.

3.2. Gaussian Process Regression

GP regression is an extensively studied function-space
Bayesian model [53]. It enjoys exact Bayesian inference
and non-parametric flexibility, allowing for a high degree
of freedom in kernel specification to adapt the model to var-
ious types of nonlinear data. Consequently, it is often the
preferred choice for small- to medium-sized datasets.

Specifically, GP regression usually deploys a prior in the
following formula:

f(x) ∼ GP(m(x), k(x,x′)), (1)

where m(x) indicates the mean function and k(x,x′) de-
notes the kernel (covariance) function that describes the
similarity among data points. Assume additive isotropic
Gaussian noise on the function output, which corresponds
to a Gaussian likelihood y(x)|f(x) ∼ N (y(x); f(x), σ2I)
where σ2 is the noise variance. The predictive distribution
of the function evaluations f∗ on new data points X∗ is:

f∗|X∗,X,Y ∼ N (E[f∗], cov(f∗)), (2)

where
E[f∗] := mX∗ + kX∗,X[kX,X + σ2I]−1(Y −mX),

cov(f∗) := kX∗,X∗ − kX∗,X[kX,X + σ2I]−1kX,X∗ ,
(3)

mX ∈ RN×C and kX,X ∈ RN×N represent the evaluation
of m(·) and k(·, ·) on the training data X respectively. Other
matrices are defined similarly. Unlike parametric models
such as NNs, GP makes predictions for new data by re-
ferring to the training samples, similar to how humans ap-
proach the task.

This model can be readily adapted to tackle classifica-
tion problems by treating the one-hot labels as regression
targets, which is known as the label regression [30, 31, 43].
The label regression design enables analytical expressions
for both evidence and posterior, making the classifier com-
putationally efficient and easy to implement.

The GP regression also offers analytical objectives for
tuning parameters (denoted as α; including σ2 and others
in the definition of m and k). One typical choice is the log
marginal likelihood:

log p(Y|X,α) ∝ −[trace((Y −mX)⊤(kX,X

+ σ2I)−1(Y −mX)) + C log |kX,X + σ2I|],
(4)

which corresponds to the summation of the log marginal
likelihood of C independent 1-dim GP regressions. Yet, it is
shown that this objective can be negatively correlated with
the generalization [26, 35]. Given this, a more proper ob-
jective can be log p(Yval|Xval,X,Y,α), i.e., the predictive
likelihood on extra validation data (Xval,Yval). It also takes
the form of Gaussian log densities.

3.3. Deep Kernel Learning

In DKL, a θ-parameterized deep NN gθ : X → RD

is typically used to transform the input data x into hidden
features gθ(x). The kernel is then defined as:

k(x,x′) := k̃(gθ(x), gθ(x
′)), (5)

where k̃ is a base kernel, such as the popular radial basis
function (RBF) kernel or polynomial kernel.

To make the NN parameters better suited for the data
at hand, DKL treats them as hyper-parameters of the GP
model and optimizes them to maximize the marginal like-
lihood. However, the large number of hyper-parameters
makes the optimization time-consuming and increases the
risk of overfitting [41]. It can even underperform a standard
deterministic NN in some toy cases.

4. Methodology
This section explores a Bayesian approach to assem-

ble CLIP with other pre-trained models for low-shot image
classification. Given the discussion above, we take the GP
regression as the modeling framework. We then elaborate
on how to integrate various pre-trained models into it. We
provide an overview of our method in Fig. 1.

4.1. Design of Kernel

Utilizing an NN-based feature extractor to define the ker-
nel function aids to incorporate informative inductive bias
into GP, which is essential for processing complex data such
as images and texts. However, conventional approaches like
DKL suffer from the pathology that all involved NN param-
eters are required to be carefully tuned. Considering that
pre-trained models can yield representations that are gener-
ally applicable to a wide range of applications, we propose
to alternatively use pre-trained models to define deep ker-
nels and then perform an adaptive combination. By doing
this, the number of hyper-parameters in the GP is reduced
significantly, and the prior knowledge encoded by various
pre-trained models is effectively integrated.

Specifically, assuming access to K pre-trained models
g(i) : X → RD(i)

, i = 1, . . . ,K,1 we define the following
independent kernels:

k(i)(x,x′) := k̃(l(i) ◦ g(i)(x), l(i) ◦ g(i)(x′)), (6)

where ◦ denotes the element-wise product and l(i) ∈ RD(i)

+

is a learnable vector used to boost flexibility, e.g., when the
base kernel k̃ is the RBF kernel, l(i) defines the learnable
length-scales for it. We can also enforce a constraint where

1We omit the dependency of these models on their parameters because
we regard them as fixed models and do not perform fine-tuning. We assume
an L2 normalization at the end of each model unless specified otherwise.
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Figure 1. Overview of our method. We leverage a GP regressor to tackle the low-shot image classification problem. To integrate knowledge
from CLIP and other pre-trained models, we use them to specify the GP mean and kernel. The label is determined by the mean, and the
uncertainty estimate is determined by the variance.

all elements in l(i) have the same value, and the final learn-
ing outcomes are slightly impacted. By summing up these
kernels, we get the final kernel:

k(x,x′) :=

K∑
i=1

k(i)(x,x′). (7)

The learnable hyper-parameters enable an easy, automatic
adaptation of the kernel to specific data.

4.2. Design of Mean

In essence, the prior mean m(·) refers to a function mak-
ing predictions before seeing any data, i.e., a zero-shot pre-
dictor. Traditionally, m(·) is set to zero for simplicity. How-
ever, as shown in Sec. 5.5, this can lead to poor generaliza-
tion performance in low-shot image classification tasks in
practice. This suggests that it is necessary to incorporate
effective prior knowledge of m(·) into the GP.

Interestingly, a similar phenomenon has been reported in
the literature, where the linear probe CLIP using few-shot
data performs much worse than zero-shot CLIP [45]. This is
because the knowledge in the zero-shot CLIP classifier has
not been effectively integrated into the few-shot learners.

With these insights, we make a simple yet significant im-
provement to our GP model. We set the mean function m(·)
to the zero-shot linear classifier in CLIP, which has demon-
strated strong performance. Concretely, let g : X → RD

denotes CLIP’s image encoder, and w ∈ RD×C denotes
the weight of the zero-shot linear classifier composed of em-
beddings of the text descriptions of the C classes of interest.
Our prior mean takes the following form:

m(x) := γ softmax(τg(x)⊤w), (8)

where τ, γ ∈ R+ denote the introduced learnable tempera-
ture and scale respectively. Notably, we use a softmax oper-
ation to obtain classification probabilities directly because
we formulate the classification problem as a regression one.

Algorithm 1 Leverage Gaussian processes to assemble pre-
trained models for low-shot image classification

1: Input: Number of optimization steps T , training data
X, Y, validation data Xval, Yval, test data X∗, hyper-
parameters α.

2: Output: Predictions (Y∗) of X∗ and cov(f∗).
3: for t = 1 → T do
4: Obtain E[f val] and cov(f val) of Xval via Eq. (3);
5: Calculate log p(Yval|Xval,X,Y,α) and estimate its

gradients w.r.t. α;
6: Update α by one-step gradient ascent;
7: Obtain E[f∗] and cov(f∗) of X∗ via Eq. (3);
8: Y∗ = argmax(E[f∗]);

4.3. Learning

Using the classification likelihood for data fitting is also
viable. However, doing so naturally disrupts conjugacy,
leading to the inability to estimate the posterior in a closed
form [1, 54]. Therefore, we advocate label regression for
its computational efficiency and ease of implementation. It
also allows us to revert to analytical expressions for both the
evidence and the posterior.

One extra merit of label regression is that it enables
the tractable marginalization of data likelihood, so we can
perform hyper-parameter tuning more easily. Let α :=
{σ2, l(1), . . . , l(K), τ, γ} denote all hyper-parameters in our
method. We optimize them by maximizing the aforemen-
tioned log marginal likelihood or log predictive likelihood
to make them suitable for the data. In the low-shot learning
scenario, the dataset size is small, allowing us to compute
the kernel matrix, its inversion, and its determinant with
minimal cost. Using an Adam optimizer [27], convergence
is usually rapid, typically within 100 optimization steps. We
depict the overall algorithmic procedure in Algorithm 1.
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Shot 1 2 4 8 16

Ens-LP 40.25 ± 0.09 49.79 ± 0.07 57.42 ± 0.06 62.28 ± 0.09 66.31 ± 0.13
Ens-LP† 61.77 ± 0.13 64.10 ± 0.35 65.89 ± 0.33 67.59 ± 0.06 69.83 ± 0.27
Ens-CaFo 62.09 ± 0.13 63.67 ± 0.19 64.96 ± 0.06 66.57 ± 0.42 68.78 ± 0.25
Ours 63.07 ± 0.07 65.17 ± 0.23 67.50 ± 0.06 69.31 ± 0.08 70.77 ± 0.07

Table 1. Comparison with ensemble baselines of low-shot classification accuracy (%) on ImageNet.

4.4. Uncertainty Quantification

As per convention, we utilize the diagonal elements of
cov(f∗) (outlined in Eq. (3)) to quantify the predictive un-
certainty of our model on the test data points. This informa-
tion enables us to refrain from making predictions on data
with high uncertainty and, instead, implement other conser-
vative fallback strategies to handle such situations. More-
over, we can leverage this information to identify OOD
samples since they typically exhibit greater uncertainty than
in-distribution data.

5. Experiments
We first demonstrate that our method achieves competi-

tive low-shot performance on diverse and prevalent bench-
marks. Subsequently, we illustrate how our uncertainty es-
timates can identify OOD samples and validate the calibra-
tion of the learning outcomes. We also conduct ablation
studies on our method and provide analyses.

5.1. Experimental Setup

Datasets. Following CaFo [58], we conduct exper-
iments on image classification datasets including Ima-
geNet [11] and 10 other widely-used ones: Stanford-
Cars [29], UCF101 [50], Caltech101 [14], Flowers102 [39],
SUN397 [56], DTD [10], EuroSAT [21], FGVCAir-
craft [36], OxfordPets [42], and Food101 [2]. We follow
CaFo to train the model with 1, 2, 4, 8, and 16 shots of
training data and test on the entire test set.

Pre-trained models. Unless specified otherwise, we use
the ResNet-50 version of CLIP. Besides, we consider the
model trained by MoCo with ResNet-50 architecture, and
that trained by DINO with ResNet-50 architecture for en-
semble due to their popularity. We clarify that other pre-
trained models are readily applicable to our framework.

Baselines. To validate that our ensemble strategy is non-
trivial, we build three baselines for comparison: (1) Ens-LP,
short for the ensemble of linear probing, where we apply
linear probing to each pre-trained model and take the aver-
age of their output probabilities for prediction, (2) Ens-LP†,
where the zero-shot CLIP classifier is further integrated into
Ens-LP, and (3) Ens-CaFo, where we generalize the origi-
nal CaFo approach to assemble multiple pre-trained models
by fusing logits. Notably, the original CaFo approach uses

images generated by DALL·E [46] for data augmentation.
We do not use this strategy for all results reported in our
paper. Training protocols. For the hyper-parameters, we
initialize the noise variance σ2 = 0.01, the scale γ = 1,
and the temperature τ = 100. The learnable length-scales l
of the kernel are randomly initialized. We can also con-
strain all elements in l to have the same value, and the
results are slightly impacted.2 Notably, since optimizing
hyper-parameters using predictive likelihood requires a val-
idation split, which is not feasible under 1-shot setting of
ImageNet, we instead utilize marginal likelihood to opti-
mize the hyper-parameters in that case. When using the
predictive likelihood, there is an equal 1:1 ratio between the
training and validation splits. On other datasets, following
CaFo [58], we tune the hyper-parameters by the official val-
idation sets. We perform hyper-parameter optimization for
100 steps with an Adam optimizer with a learning rate of
0.01 (a cosine decay is adopted). The optimization is low-
cost, e.g., only requiring about 4 minutes on a single RTX-
3090 under the 16-shot ImageNet setting. We follow CaFo
to construct the zero-shot CLIP classifier. We report the av-
erage results over three random runs.

5.2. Predictive Performance

We first evaluate the low-shot classification performance
on the ImageNet benchmark. The results are presented in
Tab. 1. As shown, our method outperforms other baselines
with clear margins. The less favorable results of the base-
lines underscore the inherent challenges in amalgamating
knowledge from multiple pre-trained models.

The merits of our method are more prominent for
medium-sized training data (e.g., the 4 and 8 shots). It is
worth noting that the performance difference between Ens-
LP and Ens-LP† is quite significant, which further under-
scores the importance of introducing the zero-shot CLIP-
based classifier.

To further evidence the generality and superiority of our
model, we conduct experiments on ten other popular bench-
marks across various domains, with the results reported in
Fig. 2. As shown, our method surpasses or is on par with
the competing baselines on most benchmarks.

2For example, on the 16-shot ImageNet, the accuracy is 70.77% when
l is set as a learnable vector and 70.42% when constraining all elements in
l to have the same value.

5



Figure 2. Comparison of low-shot classification accuracy (%) on the ten popular benchmarks.

Shot 1 2 4 8 16

Linear-probe 22.17 31.90 41.20 49.52 56.13
CoOp 57.15 57.81 59.99 61.56 62.95
CLIP-Adapter 61.20 61.52 61.84 62.68 63.59
VT-CLIP 60.53 61.29 62.02 62.81 63.92
Tip-Adapter-F 61.32 61.69 62.52 64.00 65.51
CALIP-FS 61.35 62.03 63.13 64.11 65.81
Ours 63.07 65.17 67.50 69.31 70.77

Table 2. Comparison with leading methods of low-shot classifica-
tion accuracy (%) on ImageNet.

We also compare our method to leading CLIP-based
low-shot learners, including CLIP-Adapter [15], Tip-
Adapter-F [57], CoOp [60], and CALIP-FS [17] on Ima-
geNet [11]. All these methods use the CLIP model with
ResNet-50 architecture, the same as ours. The results in
Tab. 2 show that our method consistently achieves higher
accuracy than the leading approaches, which indicates the
necessity of assembling complementary prior knowledge
from various pre-trained models for low-shot classification.

5.3. Evaluation on OOD Data

We next evaluate the robustness and the quality of uncer-
tainty estimates of our method on OOD data.

OOD robustness. We use our model trained on 16-
shot ImageNet to evaluate OOD samples from ImageNet-
V2 [47] and ImageNet-Sketch [23]. ImageNet-v2 is an Im-
ageNet test set collected using the original labeling proto-
col, with 10 samples per class. ImageNet-Sketch shares the
same classes as ImageNet, but all images are sketches. As

Datasets Source Target

ImageNet -V2 -Sketch

Ens-CaFo 68.53 59.62 36.12
Ens-LP 66.37 55.08 24.76
Ens-LP† 70.13 59.86 34.66
Ours 70.77 61.30 36.58

Table 3. Test accuracy (%) on OOD datasets.

shown in Tab. 3, our model exhibits superior OOD robust-
ness compared to the ensemble baselines on both ImageNet-
V2 and ImageNet-Sketch.

Quality of uncertainty estimates. We then assess the
quality of our uncertainty estimates on the above OOD
datasets. We collect the predictive uncertainty estimates
yielded by our model for both in-distribution data points
and OOD ones and depict the histogram in Fig. 3, where
the results of the baselines are also included. As the base-
lines are deterministic, we take one minus the prediction
confidence as their uncertainty estimate. As implied by
the histograms, our model does not regard ImageNet-V2
as OOD data, which aligns with the fact that the distribu-
tion of ImageNet-V2 is as similar as possible to the original
ImageNet [44]. On the other hand, our method can clearly
identify the OOD ImageNet-Sketch dataset. For the other
three baselines, while we can also observe that the differ-
ences between ImageNet and ImageNet-V2 are smaller than
those between ImageNet and ImageNet-Sketch, the mani-
festations of these properties are not as pronounced as in
our approach. We also provide additional illustrative fig-
ures demonstrating the utilization of uncertainty estimates,

6
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Figure 3. Histogram for uncertainty estimates. We evaluate different ensemble methods on ImageNet, ImageNet-V2, and Imagenet-Sketch.
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Figure 4. Realibility diagrams of the four ensemble methods.

shown in the Appendix.
We further quantitatively estimate the effectiveness of

the uncertainty estimates by using them to distinguish
ImageNet-Sketch from ImageNet. The AUROCs for our
method, Ens-LP, Ens-LP†, and Ens-CaFo to distinguish be-
tween ImageNet and ImageNet-Sketch are 0.8545, 0.8249,
0.8253, and 0.7546 respectively. These results align with
our previous analyses and validate the superior reliability of
our uncertainty estimates.

5.4. Model Calibration

We then evaluate the model calibration of the proposed
method by the ECE metric [16]. For our method, we take
the maximum element in E[f∗] as predictive confidence to
calculate ECE. The results are presented in Tab. 4, and our
model is slightly worse than Ens-CaFo. However, accord-
ing to [40], ECE leaves ambiguity in both its binning imple-
mentation and the calibration computation for multi-class
scenarios. Its robust variant, TACE [40], can be a better al-
ternative. As shown in Tab. 4, our method enjoys the best
TACE compared to all baselines.

We further present the reliability diagrams of the four
methods in Fig. 4. The model calibration is good if the re-
liability diagram is close to the diagonal. As shown, com-
pared to Ens-LP and Ens-LP†, our method and Ens-CaFo

Method Ens-LP Ens-LP† Ens-CaFo Ours

ECE 0.1489 0.1858 0.0577 0.0786
TACE 0.0462 0.0477 0.0545 0.0169

Table 4. ECE and TACE of the four ensemble methods. All exper-
iments are conducted on ImageNet.

are more well calibrated. Besides, our method, Ens-LP, and
Ens-LP† tend to be underconfident, and the Ens-CaFo tends
to be overconfident. Combining the results in Tab. 4 and
Fig. 4 yields the conclusion that our method enjoys good
model calibration.

5.5. Ablation Study

In this section, we offer ablation studies for our method,
including an examination of the mean and kernel of the GP,
an investigation into how optimization objectives impact the
results, and some visualization results.

GP mean. We investigate the impact of the GP mean
on the final results in Fig. 5a. As shown, when the mean
function equals zero or a learnable vector, prior knowledge
is not incorporated into the GP model, and the final few-shot
classification performance is unsatisfactory.

GP base kernel. We then delve into the specification of
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Figure 5. Ablation studies on (a) GP mean, (b) GP base kernel, (c) Pre-trained model, and (d) hyper-parameter optimization objective. All
experiments are conducted on ImageNet.

the GP base kernel. The GP base kernel takes the RBF for-
mula, and we opt for it due to its common usage, ease of im-
plementation, and effectiveness. We also explore other for-
mulas of base kernels, e.g., the Laplacian kernel and Matérn
kernel. The results on ImageNet are presented in Fig. 5b. It
is evident that the RBF kernel performs best.

Pre-trained model. To delve deeper into the impact
of different pre-trained models, we test using various pre-
trained models to specify the GP kernel. The results on
ImageNet are shown in Fig. 5c. It is evident that integrat-
ing multiple sources of prior knowledge provided by dif-
ferent pre-trained models leads to substantial advantages.
We observe that assembling three pre-trained models al-
ready provides comprehensive prior knowledge of Ima-
geNet, and additional integration of pre-trained models like
SimCLR [7] does not significantly improve performance.
Including models pre-trained on datasets distinct from Ima-
geNet can probably bring further benefits.

Objective. As pointed out, the marginal likelihood tends
to be sensitive to prior assumptions, potentially resulting in
underfitting or overfitting [26, 35]. Therefore, the marginal
likelihood can be negatively correlated with the general-
ization capability. Thus, we advocate the predictive likeli-
hood for tuning hyper-parameters. We perform an empirical
study on the objective for hyper-parameter optimization in
Fig. 5d. As previously explained, under the 1-shot setting,
we cannot use predictive likelihood. The results clearly
echo such an argument and support the use of predictive
likelihood for hyper-parameter optimization.

Visualization of the prior kernels. In Fig. 6, we illus-
trate the data similarities given by the prior deep kernels de-
fined with various pre-trained models. The data points are
randomly sampled from ImageNet. The results reflect that
distinct prior knowledge regarding data similarities is em-
bedded in these models, and through the kernel ensemble
approach, our method can achieve knowledge integration.

(a) CLIP (b) DINO

(c) MoCo (d) Ensemble

Figure 6. Visualization of prior kernel similarities.

6. Conclusion

This work presents a simple and effective Bayesian ap-
proach for low-shot image classification. We develop a GP
framework to flexibly incorporate diverse prior knowledge
from pre-trained models. Extensive experiments showcase
the superiority and strong generalization capabilities of our
method. More importantly, we demonstrate that the uncer-
tainty given by our method is well-calibrated. Our method
will likely enable intriguing applications such as OOD de-
tection by leveraging the uncertainty estimates. Overall,
our study demonstrates the exceptional power of Bayesian
methods in the large model era and aids in paving the path

8



for future algorithmic improvements in low-shot learning.
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A. Datasets Preparation
The datasets employed in this work have been slightly

modified to accommodate low-shot classification better. To
ensure a fair comparison with previous works, in line with
CaFo [58], we randomly sampled 1, 2, 4, 8, and 16 data
points per class from ImageNet [11]. These sets are des-
ignated as 1, 2, 4, 8, and 16-shot training sets, with the
ImageNet validation set serving as the test set. All sam-
ples from ImageNet-V2 [47] and ImageNet-Sketch [23] are
exclusively used for testing purposes. For other datasets,
we adhere to the same train/test/val splits as established by
CaFo.

B. Additional Ablation Study
CLIP’s Visual Encoders. For further performance

enhancement on ImageNet [11], we attempt to change the
backbone of the image encoder in CLIP from ResNet-50 to
ViT-B/16. We provide the corresponding results in Tab. 5.
It is easy to see that our method remains to surpass all the
ensemble baselines consistently.

Shot 1 2 4 8 16

Ens-LP 41.60 51.75 59.82 65.42 69.86
Ens-LP† 69.81 71.11 71.45 73.05 74.20
Ens-CaFo 70.00 71.03 71.79 72.86 74.49
Ours 70.70 71.48 72.62 73.96 75.22

Table 5. Accuracy (%) on ImageNet when using the CLIP with a
ViT-B/16 image encoder.

DALL-E Augmentation. Following CaFo [58], we
also explore the impact of using synthetic images for data
augmentation. According to [58], under the 1,2,4-shot set-
ting, we use 8 synthetic images per class for augmentation.
Under the 8, 16-shot setting, we use 2 synthetic images per
class for augmentation. The results in Tab. 6 can serve as an
ablation study on the DALL-E [46] augmentation. We can
see that the use of synthetic images is intended to provide
benefits when dealing with an extremely limited number of
training samples, e.g., 1 or 2-shot setting. With data aug-
mentation, our method also consistently outperforms other
baselines. This demonstrates the effectiveness of our ap-
proach as well as its robustness against data augmentation.

C. Visualization of Uncertainty Estimates
We train our model on ImageNet [11] and then test on

ImageNet-V2 [47], ImageNet-A [23], ImageNet-R [22],
and Imagenet-Sketch [23] to get the uncertainty estimate
distributions. The results in Fig. 7 align with the fact that
ImageNet-V2 and ImageNet-A have similar distributions
with ImageNet, while the distributions of ImageNet-R and

Shot 1 2 4 8 16

Ens-LP 56.23 57.70 59.60 63.67 67.23
Ens-LP† 66.62 67.08 67.20 67.71 69.22
Ens-CaFo 65.19 66.02 66.65 67.45 68.85
Ours 67.32 67.93 68.65 69.56 70.83

Table 6. Accuracy (%) on ImageNet when using DALL-E aug-
mentation.

Imagenet-Sketch are different from ImageNet.
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Figure 7. Histogram for uncertainty estimates. We evaluate our
methods on ImageNet, ImageNet-V2, ImageNet-A, ImageNet-R,
and Imagenet-Sketch.

To further evaluate the OOD detection capability of our
method, we initially pre-train our model using the Stanford-
Cars [29] dataset and subsequently evaluate its performance
on various datasets to get histograms for uncertainty esti-
mates. As depicted in Fig. 8, it is evident that our model dis-
tinguishes unique uncertainty distributions among the nine
datasets and the StanfordCars dataset. The findings suggest
that our model discerns dissimilarities, classifying the nine
datasets as OOD data from the StanfordCars dataset.
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Figure 8. Histogram for uncertainty estimates. We evaluate our methods on StanfordCars and nine other datasets.
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